Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Closed-shell and open-shell square-planar iridium nitrido complexes

Abstract

Coupling reactions of nitrogen atoms represent elementary steps to many important heterogeneously catalysed reactions, such as the Haber–Bosch process or the selective catalytic reduction of NOx to give N2. For molecular nitrido (and related oxo) complexes, it is well established that the intrinsic reactivity, for example nucleophilicity or electrophilicity of the nitrido (or oxo) ligand, can be attributed to M–N (M–O) ground-state bonding. In recent years, nitrogen (oxygen)-centred radical reactivity was ascribed to the possible redox non-innocence of nitrido (oxo) ligands. However, unequivocal spectroscopic characterization of such transient nitridyl {M=N} (or oxyl {M–O}) complexes remained elusive. Here we describe the synthesis and characterization of the novel, closed-shell and open-shell square-planar iridium nitrido complexes [IrN(Lt-Bu)]+ and [IrN(Lt-Bu)] (Lt-Bu=N(CHCHP-t-Bu2)2). Spectroscopic characterization and quantum chemical calculations for [IrN(Lt-Bu)] indicate a considerable nitridyl, {Ir=N}, radical character. The clean formation of IrI–N2 complexes via binuclear coupling is rationalized in terms of nitrido redox non-innocence in [IrN(Lt-Bu)].

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron-rich nitrido complexes.
Figure 2: Synthetic scheme.
Figure 3: Molecular and electronic structure of iridium nitrido complexes.
Figure 4: EPR spectroscopic characterization and bonding in [IrN(Lt-Bu)].
Figure 5: Qualitative orbital interactions that lead to N–N coupling.

Similar content being viewed by others

References

  1. Ueta, H., Gleeson, M. A. & Kleyn, A. W. Scattering of hyperthermal nitrogen atoms from the Ag(111) surface. J. Phys. Chem. A 113, 15092–15099 (2009).

    Article  CAS  Google Scholar 

  2. Schlögl, R. Catalytic synthesis of ammonia – a ‘never-ending story’? Angew. Chem. Int. Ed. 42, 2004–2008 (2003).

    Article  Google Scholar 

  3. Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    Article  CAS  Google Scholar 

  4. Hu, Y. H., Griffiths, K. & Norton, P. R. Surface science studies of selective catalytic reduction of NO: progress in the last ten years. Surf. Sci. 603, 1740–1750 (2009).

    Article  CAS  Google Scholar 

  5. Weststrate, C. J., Bakker, J. W., Gluhoi, A. C., Ludwig, W. & Nieuwenhuys, B. E. Ammonia oxidation on Ir(III): why Ir is more selective to N2 than Pt. Catal. Today 154, 46–52 (2010).

    Article  CAS  Google Scholar 

  6. Rees, N. V. & Compton, R. G. Carbon-free energy: a review of ammonia- and hydrazine-based electrochemical fuel cells. Energ. Environ. Sci. 4, 1255–1260 (2011).

    Article  CAS  Google Scholar 

  7. Buhr, J. D. & Taube, H. Oxidation of [Os(NH3)5CO]2+ to [(Os(NH3)4CO)2N2]4+. Inorg. Chem. 18, 2208–2212 (1979).

    Article  CAS  Google Scholar 

  8. Ware, D. C. & Taube, H. Substitution-induced N–N coupling for nitride coordinated to osmium(VI). Inorg. Chem. 30, 4605–4610 (1991).

    Article  CAS  Google Scholar 

  9. Lam, H. W., Che, C. M. & Wong, K. Y. Photoredox properties of [OsN(NH3)4]3+ and mechanism of formation of [{Os(NH3)4(CH3CN)}2N2]5+ through a nitrido-coupling reaction. J. Chem. Soc. Dalton Trans. 1411–1416 (1992).

  10. Demadis, K. D., El-Samanody, E. S., Coia, G. M. & Meyer, T. J. OsIII(N2)OsII complexes at the localized-to-delocalized, mixed-valence transition. J. Am. Chem. Soc. 121, 535–544 (1999).

    Article  CAS  Google Scholar 

  11. Seymore, S. B. & Brown, S. N. Polar effects in nitride coupling reactions. Inorg. Chem. 41, 462–469 (2002).

    Article  CAS  Google Scholar 

  12. Man, W. L. et al. Highly electrophilic (salen)ruthenium(VI) nitrido complexes. J. Am. Chem. Soc. 126, 478–479 (2004).

    Article  CAS  Google Scholar 

  13. Betley, T. A. & Peters, J. C. A tetrahedrally coordinated L3Fe−Nx platform that accommodates terminal nitride (FeIV≡N) and dinitrogen (FeI−N2−FeI) ligands. J. Am. Chem. Soc. 126, 6252–6254 (2004).

    Article  CAS  Google Scholar 

  14. Kane-Maguire, L. A. P., Sheridan, P. S., Basolo, F. & Pearson, R. G. Azidoruthenium(III) complexes as precursors for molecular nitrogen and nitrene complexes. J. Am. Chem. Soc. 92, 5865–5872 (1970).

    Article  CAS  Google Scholar 

  15. Eckermann, A. L. & Meade, T. J. Azidoruthenium(III) complexes as precursors for molecular nitrogen and nitrene complexes. Chemtracts 17, 523–526 (2004).

    CAS  Google Scholar 

  16. Meyer, K., Bill, E., Mienert, B., Weyhermuller, T. & Wieghardt, K. Photolysis of cis-and trans-[FeIII(cyclam)(N3)2]+ complexes: spectroscopic characterization of a nitridoiron(V) species. J. Am. Chem. Soc. 121, 4859–4876 (1999).

    Article  CAS  Google Scholar 

  17. Grapperhaus, C. A., Mienert, B., Bill, E., Weyhermuller, T. & Wieghardt, K. Mononuclear (nitrido)iron(V) and (oxo)iron(IV) complexes via photolysis of [(cyclam-acetato)FeIII(N3)]+ and ozonolysis of [(cyclam-acetato)FeIII(O3SCF3)]+ in water/acetone mixtures. Inorg. Chem. 39, 5306–5317 (2000).

    Article  CAS  Google Scholar 

  18. Aliaga-Alcalde, M. et al. The geometric and electronic structure of [(cyclam-acetato)Fe(N)]+: a genuine iron(V) species with a ground-state spin S = 1/2. Angew. Chem. Int. Ed. 44, 2908–2912 (2005).

    Article  CAS  Google Scholar 

  19. Berry, J. F. et al. An octahedral coordination complex of iron(VI). Science 312, 1937–1941 (2006).

    Article  CAS  Google Scholar 

  20. de Oliveira, F. T. et al. Chemical and spectroscopic evidence for an FeV-oxo complex. Science 315, 835–838 (2007).

    Article  Google Scholar 

  21. Bendix, J. et al. Heterobimetallic nitride complexes from terminal chromium(V) nitride complexes: hyperfine coupling increases with distance. Angew. Chem. Int. Ed. 50, 4480–4483 (2011).

    Article  CAS  Google Scholar 

  22. Tran, B. L. et al. A four coordinate parent imide via a titanium nitridyl. Chem. Commun. 48, 1529–1531 (2012).

    Article  CAS  Google Scholar 

  23. Schlangen, M. et al. Gas-phase C–H and N–H bond activation by a high valent nitrido-iron dication and <NH>-transfer to activated olefins. J. Am. Chem. Soc. 130, 4285–4294 (2008).

    Article  CAS  Google Scholar 

  24. Schöffel, J., Šušnjar, N., Nückel, S., Sieh, D. & Burger, P. 4d vs. 5d – reactivity and fate of terminal nitrido complexes of rhodium and iridium. Eur. J. Inorg. Chem. 2010, 4911–4915 (2010).

    Article  Google Scholar 

  25. Thomson, R. K. et al. Uranium azide photolysis results in C–H bond activation and provides evidence for a terminal uranium nitride. Nature Chem. 2, 723–729 (2010).

    Article  CAS  Google Scholar 

  26. Atienza, C. C. H., Bowman, A. C., Lobkovsky, E. & Chirik, P. J. Photolysis and thermolysis of bis(imino)pyridine cobalt azides: C–H activation from putative cobalt nitrido complexes. J. Am. Chem. Soc. 132, 16343–16345 (2010).

    Article  Google Scholar 

  27. Long, A. K. M., Yu, R. P., Timmer, G. H. & Berry, J. F. Aryl C–H bond amination by an electrophilic diruthenium nitride. J. Am. Chem. Soc. 132, 12228–12230 (2010).

    Article  Google Scholar 

  28. Long, A. K. M. et al. Aryl C–H amination by diruthenium nitrides in the solid state and in solution at room temperature: experimental and computational study of the reaction mechanism. J. Am. Chem. Soc. 133, 13138–13150 (2011).

    Article  CAS  Google Scholar 

  29. Decker, A. & Solomon, E. I. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities. Curr. Opin. Chem. Biol. 9, 152–163 (2005).

    Article  CAS  Google Scholar 

  30. Schlangen, M. & Schwarz, H. Ligand and electronic-structure effects in metal-mediated gas-phase activation of methane: a cold approach to a hot problem. Dalton Trans. 10155–10165 (2009).

  31. Ye, S. F. & Neese, F. Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C–H bond activation transition state. Proc. Natl Acad. Sci. USA 108, 1228–1233 (2011).

    Article  CAS  Google Scholar 

  32. Scepaniak, J. J., Young, J. A., Bontchev, R. P. & Smith, J. M. Formation of ammonia from an iron nitrido complex. Angew. Chem. Int. Ed. 48, 3158–3160 (2009).

    Article  CAS  Google Scholar 

  33. Eikey, R. A. & Abu-Omar, M. M. Nitrido and imido transition metal complexes of Groups 6–8. Coord. Chem. Rev. 243, 83–124 (2003).

    Article  CAS  Google Scholar 

  34. Berry, J. F. Terminal nitrido and imido complexes of the late transition metals. Comments Inorg. Chem. 30, 28–66 (2009).

    Article  CAS  Google Scholar 

  35. Saouma, C. T. & Peters, J. C. M≡E and M=E complexes of iron and cobalt that emphasize three-fold symmetry (E≡O, N, NR). Coord. Chem. Rev. 255, 920–937 (2011).

    Article  CAS  Google Scholar 

  36. Hohenberger, J., Ray, K. & Meyer, K. The biology and chemistry of high-valent iron-oxo and iron-nitrido complexes. Nature Commun. 3, 720 (2012).

    Article  Google Scholar 

  37. Walstrom, A. et al. A facile approach to a d4 Ru≡N: moiety. J. Am. Chem. Soc. 127, 5330–5331 (2005).

    Article  CAS  Google Scholar 

  38. Askevold, B. et al. Ammonia formation by metal–ligand cooperative hydrogenolysis of a nitrido ligand. Nature Chem. 3, 532–537 (2011).

    Article  CAS  Google Scholar 

  39. Schöffel, J., Rogachev, A. Y., DeBeer George, S. & Burger, P. Isolation and hydrogenation of a complex with a terminal iridium–nitrido bond. Angew. Chem. Int. Ed. 48, 4734–4738 (2009).

    Article  Google Scholar 

  40. Sieh, D., Schoffel, J. & Burger, P. Synthesis of a chloro protected iridium nitrido complex. Dalton Trans. 40, 9512–9524 (2011).

    Article  CAS  Google Scholar 

  41. Meiners, J. et al. Square-planar iridium(II) and iridium(III) amido complexes stabilized by a PNP pincer ligand. Angew. Chem. Int. Ed. 50, 8184–8187 (2011).

    Article  CAS  Google Scholar 

  42. de Bruin, B., Hetterscheid, D. G. H., Koekkoek, A. J. J. & Grützmacher, H. In Progress in Inorganic Chemistry Vol. 55 (ed. Karin, K. D.) 247–354 (Wiley, 2007).

  43. Bonomo, L., Solari, E., Scopelliti, R. & Floriani, C. Ruthenium nitrides: redox chemistry and photolability of the Ru-nitrido group. Angew. Chem. Int. Ed. 40, 2529–2531 (2001).

    Article  CAS  Google Scholar 

  44. Pap, J. S., DeBeer George, S. & Berry, J. F. Delocalized metal–metal and metal–ligand multiple bonding in a linear Ru–Ru≡N unit: elongation of a traditionally short Ru≡N bond. Angew. Chem. Int. Ed. 47, 10102–10105 (2008).

    Article  CAS  Google Scholar 

  45. Ghosh, R., Kanzelberger, M., Emge, T. J., Hall, G. S. & Goldman, A. S. Dinitrogen complexes of pincer-ligated iridium. Organometallics 25, 5668–5671 (2006).

    Article  CAS  Google Scholar 

  46. Laplaza, C. E. et al. Dinitrogen cleavage by three-coordinate molybdenum(III) complexes: mechanistic and structural data. J. Am. Chem. Soc. 118, 8623–8638 (1996).

    Article  CAS  Google Scholar 

  47. Penkert, F. N. et al. Anilino radical complexes of cobalt(III) and manganese(IV) and comparison with their phenoxyl analogues. J. Am. Chem. Soc. 122, 9663–9673 (2000).

    Article  CAS  Google Scholar 

  48. Büttner, T. et al. A stable aminyl radical metal complex. Science 307, 235–238 (2005).

    Article  Google Scholar 

  49. Adhikari, D. et al. Structural, spectroscopic, and theoretical elucidation of a redox-active pincer-type ancillary applied in catalysis. J. Am. Chem. Soc. 130, 3676–3682 (2008).

    Article  CAS  Google Scholar 

  50. Mankad, N. P., Antholine, W. E., Szilagyi, R. K. & Peters, J. C. Three-coordinate copper(I) amido and aminyl radical complexes. J. Am. Chem. Soc. 131, 3878–3880 (2009).

    Article  CAS  Google Scholar 

  51. Kogut, E., Wiencko, H. L., Zhang, L. B., Cordeau, D. E. & Warren, T. H. A terminal Ni(III)-imide with diverse reactivity pathways. J. Am. Chem. Soc. 127, 11248–11249 (2005).

    Article  CAS  Google Scholar 

  52. Eckert, N. A. et al. Coordination-number dependence of reactivity in an imidoiron(III) complex. Angew. Chem. Int. Ed. 45, 6868–6871 (2006).

    Article  CAS  Google Scholar 

  53. Miyazato, Y., Wada, T., Muckerman, J. T., Fujita, E. & Tanaka, K. Generation of a RuII-semiquinone–anilino-radical complex through the deprotonation of a RuIII-semiquinone–anilido complex. Angew. Chem. Int. Ed. 46, 5728–5730 (2007).

    Article  CAS  Google Scholar 

  54. Lu, C. C. et al. An electron-transfer series of high-valent chromium complexes with redox non-innocent, non-heme ligands. Angew. Chem. Int. Ed. 47, 6384–6387 (2008).

    Article  CAS  Google Scholar 

  55. Walstrom, A. N. et al. Influence of the metal orbital occupancy and principal quantum number on organoazide (RN3) conversion to transition-metal imide complexes. Inorg. Chem. 47, 9002–9009 (2008).

    Article  CAS  Google Scholar 

  56. Takaoka, A., Gerber, L. C. H. & Peters, J. C. Access to well-defined ruthenium(I) and osmium(I) metalloradicals. Angew. Chem. Int. Ed. 49, 4088–4091 (2010).

    Article  CAS  Google Scholar 

  57. Cowley, R. E. et al. Three-coordinate terminal imidoiron(III) complexes: structure, spectroscopy, and mechanism of formation. Inorg. Chem. 49, 6172–6187 (2010).

    Article  CAS  Google Scholar 

  58. Cowley, R. E. et al. Selectivity and mechanism of hydrogen atom transfer by an isolable imidoiron(III) complex. J. Am. Chem. Soc. 133, 9796–9811 (2011).

    Article  CAS  Google Scholar 

  59. King, E. R., Hennessy, E. T. & Betley, T. A. Catalytic C–H bond amination from high-spin iron imido complexes. J. Am. Chem. Soc. 133, 4917–4923 (2011).

    Article  CAS  Google Scholar 

  60. Kunkely, H. & Vogler, A. Photolysis of aqueous [(NH3)5Os(μ-N2)Os(NH3)5]5+: cleavage of dinitrogen by an intramolecular photoredox reaction. Angew. Chem. Int. Ed. 49, 1591–1593 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft (Emmy-Noether Programm, SCHN950/2-1) and the European Research Council (Grant Agreement 202886) for funding.

Author information

Authors and Affiliations

Authors

Contributions

M.G.S. performed and S.S. supervised the synthetic work. M.G.S., B.A., E.J.R., B.d.B. and S.S. carried out the spectroscopic examinations and F.W.H. the crystallographic characterizations. B.d.B. performed the quantum chemical study. The paper was co-written by B.d.B. and S.S. and all the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Bas de Bruin or Sven Schneider.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1630 kb)

Supplementary information

Crystallographic data for compound 7b7b (CIF 36 kb)

Supplementary information

Crystallographic data for compound 10 (CIF 32 kb)

Supplementary information

Crystallographic data for compound 11 (CIF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheibel, M., Askevold, B., Heinemann, F. et al. Closed-shell and open-shell square-planar iridium nitrido complexes. Nature Chem 4, 552–558 (2012). https://doi.org/10.1038/nchem.1368

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing