Abstract
Coupling reactions of nitrogen atoms represent elementary steps to many important heterogeneously catalysed reactions, such as the Haber–Bosch process or the selective catalytic reduction of NOx to give N2. For molecular nitrido (and related oxo) complexes, it is well established that the intrinsic reactivity, for example nucleophilicity or electrophilicity of the nitrido (or oxo) ligand, can be attributed to M–N (M–O) ground-state bonding. In recent years, nitrogen (oxygen)-centred radical reactivity was ascribed to the possible redox non-innocence of nitrido (oxo) ligands. However, unequivocal spectroscopic characterization of such transient nitridyl {M=N•} (or oxyl {M–O•}) complexes remained elusive. Here we describe the synthesis and characterization of the novel, closed-shell and open-shell square-planar iridium nitrido complexes [IrN(Lt-Bu)]+ and [IrN(Lt-Bu)] (Lt-Bu=N(CHCHP-t-Bu2)2). Spectroscopic characterization and quantum chemical calculations for [IrN(Lt-Bu)] indicate a considerable nitridyl, {Ir=N•}, radical character. The clean formation of IrI–N2 complexes via binuclear coupling is rationalized in terms of nitrido redox non-innocence in [IrN(Lt-Bu)].
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ueta, H., Gleeson, M. A. & Kleyn, A. W. Scattering of hyperthermal nitrogen atoms from the Ag(111) surface. J. Phys. Chem. A 113, 15092–15099 (2009).
Schlögl, R. Catalytic synthesis of ammonia – a ‘never-ending story’? Angew. Chem. Int. Ed. 42, 2004–2008 (2003).
Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).
Hu, Y. H., Griffiths, K. & Norton, P. R. Surface science studies of selective catalytic reduction of NO: progress in the last ten years. Surf. Sci. 603, 1740–1750 (2009).
Weststrate, C. J., Bakker, J. W., Gluhoi, A. C., Ludwig, W. & Nieuwenhuys, B. E. Ammonia oxidation on Ir(III): why Ir is more selective to N2 than Pt. Catal. Today 154, 46–52 (2010).
Rees, N. V. & Compton, R. G. Carbon-free energy: a review of ammonia- and hydrazine-based electrochemical fuel cells. Energ. Environ. Sci. 4, 1255–1260 (2011).
Buhr, J. D. & Taube, H. Oxidation of [Os(NH3)5CO]2+ to [(Os(NH3)4CO)2N2]4+. Inorg. Chem. 18, 2208–2212 (1979).
Ware, D. C. & Taube, H. Substitution-induced N–N coupling for nitride coordinated to osmium(VI). Inorg. Chem. 30, 4605–4610 (1991).
Lam, H. W., Che, C. M. & Wong, K. Y. Photoredox properties of [OsN(NH3)4]3+ and mechanism of formation of [{Os(NH3)4(CH3CN)}2N2]5+ through a nitrido-coupling reaction. J. Chem. Soc. Dalton Trans. 1411–1416 (1992).
Demadis, K. D., El-Samanody, E. S., Coia, G. M. & Meyer, T. J. OsIII(N2)OsII complexes at the localized-to-delocalized, mixed-valence transition. J. Am. Chem. Soc. 121, 535–544 (1999).
Seymore, S. B. & Brown, S. N. Polar effects in nitride coupling reactions. Inorg. Chem. 41, 462–469 (2002).
Man, W. L. et al. Highly electrophilic (salen)ruthenium(VI) nitrido complexes. J. Am. Chem. Soc. 126, 478–479 (2004).
Betley, T. A. & Peters, J. C. A tetrahedrally coordinated L3Fe−Nx platform that accommodates terminal nitride (FeIV≡N) and dinitrogen (FeI−N2−FeI) ligands. J. Am. Chem. Soc. 126, 6252–6254 (2004).
Kane-Maguire, L. A. P., Sheridan, P. S., Basolo, F. & Pearson, R. G. Azidoruthenium(III) complexes as precursors for molecular nitrogen and nitrene complexes. J. Am. Chem. Soc. 92, 5865–5872 (1970).
Eckermann, A. L. & Meade, T. J. Azidoruthenium(III) complexes as precursors for molecular nitrogen and nitrene complexes. Chemtracts 17, 523–526 (2004).
Meyer, K., Bill, E., Mienert, B., Weyhermuller, T. & Wieghardt, K. Photolysis of cis-and trans-[FeIII(cyclam)(N3)2]+ complexes: spectroscopic characterization of a nitridoiron(V) species. J. Am. Chem. Soc. 121, 4859–4876 (1999).
Grapperhaus, C. A., Mienert, B., Bill, E., Weyhermuller, T. & Wieghardt, K. Mononuclear (nitrido)iron(V) and (oxo)iron(IV) complexes via photolysis of [(cyclam-acetato)FeIII(N3)]+ and ozonolysis of [(cyclam-acetato)FeIII(O3SCF3)]+ in water/acetone mixtures. Inorg. Chem. 39, 5306–5317 (2000).
Aliaga-Alcalde, M. et al. The geometric and electronic structure of [(cyclam-acetato)Fe(N)]+: a genuine iron(V) species with a ground-state spin S = 1/2. Angew. Chem. Int. Ed. 44, 2908–2912 (2005).
Berry, J. F. et al. An octahedral coordination complex of iron(VI). Science 312, 1937–1941 (2006).
de Oliveira, F. T. et al. Chemical and spectroscopic evidence for an FeV-oxo complex. Science 315, 835–838 (2007).
Bendix, J. et al. Heterobimetallic nitride complexes from terminal chromium(V) nitride complexes: hyperfine coupling increases with distance. Angew. Chem. Int. Ed. 50, 4480–4483 (2011).
Tran, B. L. et al. A four coordinate parent imide via a titanium nitridyl. Chem. Commun. 48, 1529–1531 (2012).
Schlangen, M. et al. Gas-phase C–H and N–H bond activation by a high valent nitrido-iron dication and <NH>-transfer to activated olefins. J. Am. Chem. Soc. 130, 4285–4294 (2008).
Schöffel, J., Šušnjar, N., Nückel, S., Sieh, D. & Burger, P. 4d vs. 5d – reactivity and fate of terminal nitrido complexes of rhodium and iridium. Eur. J. Inorg. Chem. 2010, 4911–4915 (2010).
Thomson, R. K. et al. Uranium azide photolysis results in C–H bond activation and provides evidence for a terminal uranium nitride. Nature Chem. 2, 723–729 (2010).
Atienza, C. C. H., Bowman, A. C., Lobkovsky, E. & Chirik, P. J. Photolysis and thermolysis of bis(imino)pyridine cobalt azides: C–H activation from putative cobalt nitrido complexes. J. Am. Chem. Soc. 132, 16343–16345 (2010).
Long, A. K. M., Yu, R. P., Timmer, G. H. & Berry, J. F. Aryl C–H bond amination by an electrophilic diruthenium nitride. J. Am. Chem. Soc. 132, 12228–12230 (2010).
Long, A. K. M. et al. Aryl C–H amination by diruthenium nitrides in the solid state and in solution at room temperature: experimental and computational study of the reaction mechanism. J. Am. Chem. Soc. 133, 13138–13150 (2011).
Decker, A. & Solomon, E. I. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities. Curr. Opin. Chem. Biol. 9, 152–163 (2005).
Schlangen, M. & Schwarz, H. Ligand and electronic-structure effects in metal-mediated gas-phase activation of methane: a cold approach to a hot problem. Dalton Trans. 10155–10165 (2009).
Ye, S. F. & Neese, F. Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C–H bond activation transition state. Proc. Natl Acad. Sci. USA 108, 1228–1233 (2011).
Scepaniak, J. J., Young, J. A., Bontchev, R. P. & Smith, J. M. Formation of ammonia from an iron nitrido complex. Angew. Chem. Int. Ed. 48, 3158–3160 (2009).
Eikey, R. A. & Abu-Omar, M. M. Nitrido and imido transition metal complexes of Groups 6–8. Coord. Chem. Rev. 243, 83–124 (2003).
Berry, J. F. Terminal nitrido and imido complexes of the late transition metals. Comments Inorg. Chem. 30, 28–66 (2009).
Saouma, C. T. & Peters, J. C. M≡E and M=E complexes of iron and cobalt that emphasize three-fold symmetry (E≡O, N, NR). Coord. Chem. Rev. 255, 920–937 (2011).
Hohenberger, J., Ray, K. & Meyer, K. The biology and chemistry of high-valent iron-oxo and iron-nitrido complexes. Nature Commun. 3, 720 (2012).
Walstrom, A. et al. A facile approach to a d4 Ru≡N: moiety. J. Am. Chem. Soc. 127, 5330–5331 (2005).
Askevold, B. et al. Ammonia formation by metal–ligand cooperative hydrogenolysis of a nitrido ligand. Nature Chem. 3, 532–537 (2011).
Schöffel, J., Rogachev, A. Y., DeBeer George, S. & Burger, P. Isolation and hydrogenation of a complex with a terminal iridium–nitrido bond. Angew. Chem. Int. Ed. 48, 4734–4738 (2009).
Sieh, D., Schoffel, J. & Burger, P. Synthesis of a chloro protected iridium nitrido complex. Dalton Trans. 40, 9512–9524 (2011).
Meiners, J. et al. Square-planar iridium(II) and iridium(III) amido complexes stabilized by a PNP pincer ligand. Angew. Chem. Int. Ed. 50, 8184–8187 (2011).
de Bruin, B., Hetterscheid, D. G. H., Koekkoek, A. J. J. & Grützmacher, H. In Progress in Inorganic Chemistry Vol. 55 (ed. Karin, K. D.) 247–354 (Wiley, 2007).
Bonomo, L., Solari, E., Scopelliti, R. & Floriani, C. Ruthenium nitrides: redox chemistry and photolability of the Ru-nitrido group. Angew. Chem. Int. Ed. 40, 2529–2531 (2001).
Pap, J. S., DeBeer George, S. & Berry, J. F. Delocalized metal–metal and metal–ligand multiple bonding in a linear Ru–Ru≡N unit: elongation of a traditionally short Ru≡N bond. Angew. Chem. Int. Ed. 47, 10102–10105 (2008).
Ghosh, R., Kanzelberger, M., Emge, T. J., Hall, G. S. & Goldman, A. S. Dinitrogen complexes of pincer-ligated iridium. Organometallics 25, 5668–5671 (2006).
Laplaza, C. E. et al. Dinitrogen cleavage by three-coordinate molybdenum(III) complexes: mechanistic and structural data. J. Am. Chem. Soc. 118, 8623–8638 (1996).
Penkert, F. N. et al. Anilino radical complexes of cobalt(III) and manganese(IV) and comparison with their phenoxyl analogues. J. Am. Chem. Soc. 122, 9663–9673 (2000).
Büttner, T. et al. A stable aminyl radical metal complex. Science 307, 235–238 (2005).
Adhikari, D. et al. Structural, spectroscopic, and theoretical elucidation of a redox-active pincer-type ancillary applied in catalysis. J. Am. Chem. Soc. 130, 3676–3682 (2008).
Mankad, N. P., Antholine, W. E., Szilagyi, R. K. & Peters, J. C. Three-coordinate copper(I) amido and aminyl radical complexes. J. Am. Chem. Soc. 131, 3878–3880 (2009).
Kogut, E., Wiencko, H. L., Zhang, L. B., Cordeau, D. E. & Warren, T. H. A terminal Ni(III)-imide with diverse reactivity pathways. J. Am. Chem. Soc. 127, 11248–11249 (2005).
Eckert, N. A. et al. Coordination-number dependence of reactivity in an imidoiron(III) complex. Angew. Chem. Int. Ed. 45, 6868–6871 (2006).
Miyazato, Y., Wada, T., Muckerman, J. T., Fujita, E. & Tanaka, K. Generation of a RuII-semiquinone–anilino-radical complex through the deprotonation of a RuIII-semiquinone–anilido complex. Angew. Chem. Int. Ed. 46, 5728–5730 (2007).
Lu, C. C. et al. An electron-transfer series of high-valent chromium complexes with redox non-innocent, non-heme ligands. Angew. Chem. Int. Ed. 47, 6384–6387 (2008).
Walstrom, A. N. et al. Influence of the metal orbital occupancy and principal quantum number on organoazide (RN3) conversion to transition-metal imide complexes. Inorg. Chem. 47, 9002–9009 (2008).
Takaoka, A., Gerber, L. C. H. & Peters, J. C. Access to well-defined ruthenium(I) and osmium(I) metalloradicals. Angew. Chem. Int. Ed. 49, 4088–4091 (2010).
Cowley, R. E. et al. Three-coordinate terminal imidoiron(III) complexes: structure, spectroscopy, and mechanism of formation. Inorg. Chem. 49, 6172–6187 (2010).
Cowley, R. E. et al. Selectivity and mechanism of hydrogen atom transfer by an isolable imidoiron(III) complex. J. Am. Chem. Soc. 133, 9796–9811 (2011).
King, E. R., Hennessy, E. T. & Betley, T. A. Catalytic C–H bond amination from high-spin iron imido complexes. J. Am. Chem. Soc. 133, 4917–4923 (2011).
Kunkely, H. & Vogler, A. Photolysis of aqueous [(NH3)5Os(μ-N2)Os(NH3)5]5+: cleavage of dinitrogen by an intramolecular photoredox reaction. Angew. Chem. Int. Ed. 49, 1591–1593 (2010).
Acknowledgements
The authors thank the Deutsche Forschungsgemeinschaft (Emmy-Noether Programm, SCHN950/2-1) and the European Research Council (Grant Agreement 202886) for funding.
Author information
Authors and Affiliations
Contributions
M.G.S. performed and S.S. supervised the synthetic work. M.G.S., B.A., E.J.R., B.d.B. and S.S. carried out the spectroscopic examinations and F.W.H. the crystallographic characterizations. B.d.B. performed the quantum chemical study. The paper was co-written by B.d.B. and S.S. and all the authors discussed the results and commented on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1630 kb)
Supplementary information
Crystallographic data for compound 7b7b (CIF 36 kb)
Supplementary information
Crystallographic data for compound 10 (CIF 32 kb)
Supplementary information
Crystallographic data for compound 11 (CIF 19 kb)
Rights and permissions
About this article
Cite this article
Scheibel, M., Askevold, B., Heinemann, F. et al. Closed-shell and open-shell square-planar iridium nitrido complexes. Nature Chem 4, 552–558 (2012). https://doi.org/10.1038/nchem.1368
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.1368
This article is cited by
-
Prospects and challenges for nitrogen-atom transfer catalysis
Nature Reviews Chemistry (2023)
-
Photochemical Synthesis of Transition Metal-Stabilized Uranium(VI) Nitride Complexes
Nature Communications (2022)
-
Charge frustration in ligand design and functional group transfer
Nature Reviews Chemistry (2021)
-
A platinum(ii) metallonitrene with a triplet ground state
Nature Chemistry (2020)
-
Photochemical nitrogenation of alkanes and arenes by a strongly luminescent osmium(VI) nitrido complex
Communications Chemistry (2019)