Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal–organic frameworks with dynamic interlocked components

Abstract

The dynamics of mechanically interlocked molecules such as rotaxanes and catenanes have been studied in solution as examples of rudimentary molecular switches and machines, but in this medium, the molecules are randomly dispersed and their motion incoherent. As a strategy for achieving a higher level of molecular organization, we have constructed a metal–organic framework material using a [2]rotaxane as the organic linker and binuclear Cu(II) units as the nodes. Activation of the as-synthesized material creates a void space inside the rigid framework that allows the soft macrocyclic ring of the [2]rotaxane to rotate rapidly, unimpeded by neighbouring molecular components. Variable-temperature 13C and 2H solid-state NMR experiments are used to characterize the nature and rate of the dynamic processes occurring inside this unique material. These results provide a blueprint for the future creation of solid-state molecular switches and molecular machines based on mechanically interlocked molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MOF materials are commonly constructed from a combination of rigid linking struts (green) and metal nodes (brown).
Figure 2: Synthesis and X-ray structural characterization of a mechanically interlocked MOF linker.
Figure 3: Structure of UWDM-1 determined by single-crystal X-ray diffraction.
Figure 4: PXRD traces for UWDM-1.
Figure 5: Solid-state 13C and 2H NMR (SSNMR) were used to identify and determine the nature of the dynamic motions occurring inside activated samples of UWDM-1 at various temperatures.

Similar content being viewed by others

References

  1. Stoddart, J. F. The chemistry of the mechanical bond. Chem. Soc. Rev. 38, 1802–1820 (2009).

    Article  CAS  Google Scholar 

  2. Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines—Concepts and Perspectives for the Nanoworld (Wiley InterScience, 2008).

    Book  Google Scholar 

  3. Loeb, S. J., Tiburcio, J. & Vella, S. J. A mechanical ‘flip-switch’: interconversion between co-conformations of a [2]rotaxane with a single recognition site. Chem. Commun. 15, 1598–1600 (2006).

    Article  Google Scholar 

  4. Davidson, G. J. E., Sharma, S. & Loeb, S. J. A [2]rotaxane flip switch driven by coordination geometry. Angew. Chem. Int. Ed. 49, 4938–4942 (2010).

    Article  CAS  Google Scholar 

  5. Suhan, N. H. et al. Colour coding the co-conformations of a [2]rotaxane flip-switch. Chem. Commun. 47, 5991–5993 (2011).

    Article  CAS  Google Scholar 

  6. Choi, J. W. et al. Ground-state equilibrium thermodynamics and switching kinetics of bistable [2]rotaxanes switched in solution, polymer gels, and molecular electronic devices. Chem. Eur. J. 12, 261–279 (2006).

    Article  CAS  Google Scholar 

  7. Kay, E. K., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  8. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promises? Chem. Soc. Rev. 41, 19–31 (2012).

    Article  CAS  Google Scholar 

  9. Vogelsberg, C. S. & Garcia-Garibay, M. A. Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem. Soc. Rev. 41, 1892–1910 (2012).

    Article  CAS  Google Scholar 

  10. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  Google Scholar 

  11. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nature Chem. 1, 695–704 (2009).

    Article  CAS  Google Scholar 

  12. Lin, X. et al. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J. Am. Chem. Soc. 131, 2159–2171 (2009).

    Article  CAS  Google Scholar 

  13. Hupp, J. T. & Poeppelmeier, K. R. Better living through nanopore chemistry. Science 309, 2008–2009 (2005).

    Article  CAS  Google Scholar 

  14. Ferey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    Article  CAS  Google Scholar 

  15. Loeb, S. J. Rotaxanes as ligands: from molecules to materials. Chem. Soc. Rev. 36, 226–235 (2007).

    Article  CAS  Google Scholar 

  16. Deng, H. X., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Robust dynamics. Nature Chem. 2, 439–443 (2010).

    Article  CAS  Google Scholar 

  17. Lee, E., Kim, J., Heo, J., Whang, D. & Kim, K. A two-dimensional polyrotaxane with large cavities and channels: a novel approach to metal–organic open-frameworks by using supramolecular building blocks. Angew. Chem. Int. Ed. 40, 399–402 (2001).

    Article  CAS  Google Scholar 

  18. Davidson, G. J. E. & Loeb, S. J. Channels and cavities lined with interlocked components: metal-based polyrotaxanes that utilize pyridinium axles and crown ether wheels as ligands. Angew. Chem. Int. Ed. 42, 74–77 (2003).

    Article  CAS  Google Scholar 

  19. Hoffart, D. J. & Loeb, S. J. Metal–organic rotaxane frameworks: three-dimensional polyrotaxanes from lanthanide-ion nodes, pyridinium N-oxide axles, and crown-ether wheels. Angew. Chem. Int. Ed. 44, 901–904 (2005).

    Article  CAS  Google Scholar 

  20. Vukotic, V. N. & Loeb, S. J. One-, two- and three-periodic metal–organic rotaxane frameworks (MORFs): linking cationic transition-metal nodes with an anionic rotaxane ligand. Chem. Eur. J. 16, 13630–13637 (2010).

    Article  CAS  Google Scholar 

  21. Li, Q. et al. A metal–organic framework replete with ordered donor–acceptor catenanes. Chem. Commun. 46, 380–382 (2010).

    Article  Google Scholar 

  22. Li, Q. et al. A catenated strut in a catenated metal–organic framework. Angew. Chem. Int. Ed. 49, 6751–6755 (2010).

    Article  CAS  Google Scholar 

  23. Mercer, D. J., Vukotic, V. N. & Loeb, S. J. Linking [2]rotaxane wheels to create a new type of metal organic rotaxane framework. Chem. Commun. 47, 896–898 (2011).

    Article  CAS  Google Scholar 

  24. Oh, M. et al. Anion-directed assembly of a three-dimensional metal–organic rotaxane framework. Chem. Commun. 47, 5973–5975 (2011).

    Article  Google Scholar 

  25. Coskun, A. et al. Metal–organic frameworks incorporating copper-complexed rotaxanes. Angew. Chem. Int. Ed. 51, 2160–2163 (2012).

    Article  CAS  Google Scholar 

  26. Garcia-Garibay, M. A. Molecular machines: nanoscale gadgets. Nature Mater. 7, 431–432 (2008).

    Article  CAS  Google Scholar 

  27. Khuong, T. A. V., Nunez, J. E., Godinez, C. E. & Garcia-Garibay, M. A. Crystalline molecular machines: a quest toward solid-state dynamics and function. Acc. Chem. Res. 39, 413–422 (2006).

    Article  CAS  Google Scholar 

  28. Akutagawa, T. et al. Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. Nature Mater. 8, 342–347 (2009).

    Article  CAS  Google Scholar 

  29. Loeb, S. J., Tiburcio, J. & Vella, S. J. [2]Pseudorotaxane formation with N-benzylanilinium axles and 24-crown-8 ether wheels. Org. Lett. 7, 4923–4926 (2005).

    Article  CAS  Google Scholar 

  30. Kilbinger, A. F. M., Cantrill, S. J., Waltman, A. W., Day, M. W. & Grubbs, R. H. Magic ring rotaxanes by olefin metathesis. Angew. Chem. Int. Ed. 42, 3281–3285 (2003).

    Article  CAS  Google Scholar 

  31. Wisner, J. A., Beer, P. D., Drew, M. G. B. & Sambrook, M. R. Anion-templated rotaxane formation. J. Am. Chem. Soc. 124, 12469–12476 (2002).

    Article  CAS  Google Scholar 

  32. Nakazono, K. & Takata, T. Neutralization of a sec-ammonium group unusually stabilized by the ‘rotaxane effect’: synthesis, structure, and dynamic nature of a ‘free’ sec-amine/crown ether-type rotaxane. Chem. Eur. J. 16, 13783–13794 (2010).

    Article  CAS  Google Scholar 

  33. Ma, S. Q. et al. An unusual case of symmetry-preserving isomerism. Chem. Commun. 46, 1329–1331 (2010).

    Article  Google Scholar 

  34. Ratcliffe, C. I., Ripmeester, J. A., Buchanan, G. W. & Denike, J. K. A molecular merry-go-round: motion of the large macrocyclic molecule 18-Crown-6 in its solid complexes studied by H-2 NMR. J. Am. Chem. Soc. 114, 3294–3299 (1992).

    Article  CAS  Google Scholar 

  35. Ratcliffe, C. I., Buchanan, G. W. & Denike, J. K. Dynamics of 12-Crown-4 ether in its LiNCS complex as studied by solid-state H-2 NMR. J. Am. Chem. Soc. 117, 2900–2906 (1995).

    Article  CAS  Google Scholar 

  36. Vandersluis, P. & Spek, A. L. Bypass—an effective method for the refinement of crystal-structures containing disordered solvent regions. Acta Cryst. A46, 194–201 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada, primarily through Discovery grants to S.J.L. and R.W.S. and partially through a Canada Research Chair programme award to S.J.L. R.W.S. is also grateful for support from NSERC, the Canadian Foundation for Innovation, the Ontario Innovation Trust and the University of Windsor for the development and maintenance of the SSNMR centre. V.N.V. is grateful for financial support provided by the NSERC of Canada through an Alexander Graham Bell Canada Graduate Doctoral Scholarship and by the International Center for Diffraction Data for a Ludo Frevel Crystallography Scholarship. The authors acknowledge M. Revington for technical assistance with solution NMR spectroscopy experiments and S. Zhang for recording electrospray mass spectrometry data.

Author information

Authors and Affiliations

Authors

Contributions

S.J.L. supervised the project. S.J.L. and V.N.V. designed the experiments. V.N.V. performed the synthetic experiments with assistance from K.Z. V.N.V. collected and analysed the PXRD, thermal gravimetric analysis (TGA) and single-crystal X-ray diffraction (SCXRD) data with assistance from S.J.L. K.J.H. collected and analysed the SSNMR data. R.W.S. supervised all SSNMR data collection, analysis and interpretation. S.J.L. wrote the manuscript with significant input from V.N.V., K.J.H., K.Z. and R.W.S.

Corresponding authors

Correspondence to Robert W. Schurko or Stephen J. Loeb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2641 kb)

Supplementary information

Crystallographic data for compound 5 (CIF 27 kb)

Supplementary information

Crystallographic data for compound UWDM-1 (CIF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vukotic, V., Harris, K., Zhu, K. et al. Metal–organic frameworks with dynamic interlocked components. Nature Chem 4, 456–460 (2012). https://doi.org/10.1038/nchem.1354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing