Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects

Abstract

The construction of soft and processable organic material able to display metallic conduction properties—a large density of freely moving charges—is a major challenge for electronics. Films of doped conjugated polymers are widely used as semiconductor devices, but metallic-type transport in the bulk of such materials remains extremely rare. On the other hand, single-walled carbon nanotubes can exhibit remarkably low contact resistances with related large currents, but are intrinsically very difficult to isolate and process. Here, we describe the self-assembly of supramolecular organic nanowires between two metallic electrodes, from a solution of triarylamine derivative, under the simultaneous action of light and electric field triggers. They exhibit a combination of large conductivity values (>5 × 103 S m−1) and a low interface resistance (<2 × 10−4 Ω m). Moreover, the resistance of nanowires in series with metal interfaces systematically decreases when the temperature is lowered to 1.5 K, revealing an intrinsic metallic behaviour.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Triggered self-construction process for STANWs in a nanotrench geometry together with corresponding AFM imaging.
Figure 2: Electrical properties of nanotrench devices when self-assembling STANWs.
Figure 3: Resistance of a nanotrench filled with STANWs as a function of temperature and differential conductance measured at low temperature, in vacuum, using an a.c. bridge technique.

References

  1. Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x . J. Chem. Soc. Chem. Commun. 578–580 (1977).

  2. Heeger, A. J. Nobel lecture. Semiconducting and metallic polymers: the fourth generation of polymeric materials. Rev. Mod. Phys. 73, 681–700 (2001).

    Article  CAS  Google Scholar 

  3. Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  CAS  Google Scholar 

  4. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  5. Miller, R. D. & Chandross, E. A. Introduction: materials for electronics. Chem. Rev. 110, 1–2 (2010).

    Article  CAS  Google Scholar 

  6. Bredas, J. L. in Handbook of Conducting Polymers Vol. II. (ed. Skotheim, T. A.) 859–913 (Marcel Dekker, 1986).

    Google Scholar 

  7. Stutzmann, N., Friend, R. H. & Sirringhaus, H. Self-aligned, vertical-channel, polymer field-effect transistors. Science 299, 1881–1884 (2003).

    Article  CAS  Google Scholar 

  8. McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Mater. 5, 328–333 (2006).

    Article  CAS  Google Scholar 

  9. Kohlman, R. S. et al. Limits for metallic conductivity in conducting polymers. Phys. Rev. Lett. 78, 3915–3918 (1997).

    Article  CAS  Google Scholar 

  10. Lee, K. et al. Metallic transport in polyaniline. Nature 441, 65–68 (2006).

    Article  CAS  Google Scholar 

  11. Jerome, D. & Schulz, H. J. Organic conductors and superconductors. Adv. Phys. 31, 299–490 (1982).

    Article  CAS  Google Scholar 

  12. Alves, H., Molinari, A. S., Xie, H. & Morpurgo, A. F. Metallic conduction at organic charge-transfer interfaces. Nature Mater. 7, 574–580 (2008).

    Article  CAS  Google Scholar 

  13. Crispin, X. et al. Characterization of the interface dipole at organic/metal interface. J. Am. Chem. Soc. 124, 8131–8141 (2002).

    Article  CAS  Google Scholar 

  14. Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999).

    Article  CAS  Google Scholar 

  15. Bürgi, L., Richards, T. J., Friend, R. H. & Sirringhaus, H. Close look at charge carrier injection in polymer field-effect transistors. J. Appl. Phys. 94, 6129–6137 (2003).

    Article  Google Scholar 

  16. Meijer, E. J. et al. Scaling behaviour and parasitic series resistance in disordered organic field-effect transistors. Appl. Phys. Lett. 82, 4576–4578 (2003).

    Article  CAS  Google Scholar 

  17. Hamadani, B. H. & Natelson, D. Temperature-dependant contact resistances in high-quality polymer field-effect transistors. Appl. Phys. Lett. 84, 443–445 (2004).

    Article  CAS  Google Scholar 

  18. Mann, D., Javey, A., Kong, J., Wang, Q. & Dai, H. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 3, 1541–1544 (2003).

    Article  CAS  Google Scholar 

  19. Harutyunyan, A. R. et al. Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326, 116–120 (2009).

    Article  CAS  Google Scholar 

  20. Green, A. A. & Hersam, M. C. Processing and properties of highly enriched double-wall carbon nanotubes. Nature Nanotech. 4, 64–70 (2009).

    Article  CAS  Google Scholar 

  21. Hoeben, F. J. M., Jonkheijm, P., Meijer, E. W. & Schenning, P. H. J. About supramolecular assemblies of π-conjugated systems. Chem. Rev. 105, 1491–1546 (2005).

    Article  CAS  Google Scholar 

  22. Schenning, A. P. H. J. & Meijer, E. W. Supramolecular electronics; nanowires from self-assembled π-conjugated systems. Chem. Commun. 3245–3258 (2005).

  23. Percec, V. et al. Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature 419, 384–387 (2002).

    Article  CAS  Google Scholar 

  24. Welte, L. et al. Highly conductive self-assembled nanoribbons of coordination polymers. Nature Nanotech. 5, 110–115 (2009).

    Article  Google Scholar 

  25. Samori, P. et al. Self-assembly of electron donor-acceptor dyads into ordered architectures in two and three dimensions: surface patterning and columnar ‘double cables’. J. Am. Chem. Soc. 126, 3567–3575 (2004).

    Article  CAS  Google Scholar 

  26. Hill, J. P. et al. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science 304, 1481–1483 (2004).

    Article  CAS  Google Scholar 

  27. Bhosale, R. et al. Topologically matching supramolecular n/p-heterojunction architectures. Angew. Chem. Int. Ed. 48, 6461–6464 (2009).

    Article  CAS  Google Scholar 

  28. Moulin, E. et al. The hierarchical self-assembly of charge nanocarriers: a highly cooperative process promoted by visible light. Angew. Chem. Int. Ed. 49, 6974–6978 (2010).

    Article  CAS  Google Scholar 

  29. Dayen, J-F. et al. Nanotrench for nano and microparticle electrical interconnects. Nanotechnology 21, 335303 (2010).

    Article  Google Scholar 

  30. Tawfick, S., O'Brien, K. & Hart, A. J. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing. Small 5, 2467–2473 (2009).

    Article  CAS  Google Scholar 

  31. Fitzgerald, E. A., Wuelfing, P. & Richtol, H. H. The photochemical oxidation of some aromatic amines in chloroform. J. Phys. Chem. 75, 2737–2741 (1971).

    Article  Google Scholar 

  32. Hulea, I. N., Russo, S., Molinari, A. & Morpurgo, A. F. Reproducible low contact resistance in rubrene single-crystal field-effect transistors with nickel electrodes. Appl. Phys. Lett. 88, 113512 (2006).

    Article  Google Scholar 

  33. Blech, A. Electromigration in thin films on titanium nitride. J. Appl. Phys. 47, 1203–1208 (1976).

    Article  CAS  Google Scholar 

  34. International Technology Roadmap for Semiconductors, Roadmap Information on Interconnects (2009); available at http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Interconnect.pdf

  35. Kilveson, S. & Heeger, A. J. Intrinsic conductivity of conducting polymers. Synth. Metals 22, 371–384 (1988).

    Article  Google Scholar 

  36. Hong, S. & Myung, S. A flexible approach to mobility. Nature Nanotech. 2, 207–208 (2007).

    Article  CAS  Google Scholar 

  37. Kinchin, G. H. The electrical properties of graphite. Proc. R. Soc. Lond. A 217, 9–26 (1953).

    Article  CAS  Google Scholar 

  38. Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

    Article  Google Scholar 

  39. Egger, R. et al. in Lecture Notes in Physics Vol. 579 (eds Haug, R. & Schoeller, H.) 126 (Springer, 2001).

    Google Scholar 

  40. Lau, C. N., Stewart, D. R., Williams, R. S. & Bockrath, M. Direct observation of nanoscale switching centers in metal/molecule/metal structures. Nano Lett. 4, 569–572 (2004).

    Article  CAS  Google Scholar 

  41. Borghetti, J. et al. Electrical transport and thermometry of electroformed titanium dioxide memristive switches. J. Appl. Phys. 106, 124504 (2009).

    Article  Google Scholar 

  42. Pal, S. K. et al. Resonating valence-bond ground state in a phenalenyl-based neutral radical conductor. Science 309, 281–284 (2005).

    Article  CAS  Google Scholar 

  43. Haddon, R. C. et al. Localization of spin and charge in phenalenyl-based neutral radical conductors. J. Am. Chem. Soc. 130, 13683–13690 (2008).

    Article  CAS  Google Scholar 

  44. Giuseppone, N. Toward self-constructing functional materials. Acc. Chem. Res. http://dx.doi.org/10.1021/ar2002655 (2012).

Download references

Acknowledgements

The research leading to these results received funding from the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013)/ERC Starting Grant (agreement no. 257099, to N.G.). The authors acknowledge the CNRS, the icFRC and the University of Strasbourg for financial support. Support from cleanroom facilities STnano is gratefully acknowledged, as well as the technical support of F. Chevrier, D. Spor, M. Acosta and S. Siegwald. This work was also partly funded by the NanoSciERA programme (project INTERNET, to B.D.), Agence Nationale de la Recherche projects MOSE and SUD (to B.D.), and projects Multiself and STANWs (to B.D., E.M., M.M. and N.G). This work was supported by doctoral fellowships of the French Ministry of Research (V.F., F.N. and J-B.B.) and Région Alsace (S.Z.).

Author information

Authors and Affiliations

Authors

Contributions

N.G. conceived the work. V.F, F.N., E.M., J.-F.D., B.D. and N.G. designed the core experiment. V.F., J.-F.D. and B.D. designed the electrodes. E.M. performed the synthesis. V.F. and F.N. performed the initial key experiments, joined subsequently by J-F.D., J.-B.B. and S.Z. to complete and/or reproduce the data. M.M. performed the AFM imaging. B.D. and N.G. wrote the paper. All authors analysed the data, and discussed and commented on the manuscript.

Corresponding authors

Correspondence to Bernard Doudin or Nicolas Giuseppone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1404 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Faramarzi, V., Niess, F., Moulin, E. et al. Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects. Nature Chem 4, 485–490 (2012). https://doi.org/10.1038/nchem.1332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing