Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ion-paired chiral ligands for asymmetric palladium catalysis


Conventional chiral ligands rely on the use of a covalently constructed, single chiral molecule embedded with coordinative functional groups. Here, we report a new strategy for the design of a chiral ligand for asymmetric transition-metal catalysis; our approach is based on the development of an achiral cationic ammonium–phosphine hybrid ligand paired with a chiral binaphtholate anion. This ion-paired chiral ligand imparts a remarkable stereocontrolling ability to its palladium complex, which catalyses a highly enantioselective allylic alkylation of α-nitrocarboxylates. By exploiting the possible combinations of the achiral onium entities with suitable coordinative functionalities and readily available chiral acids, this approach should contribute to the development of a broad range of metal-catalysed, stereoselective chemical transformations.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Strategies for construction of a chiral environment around a metal catalyst.
Figure 2: ORTEP diagram of 3b.
Figure 3: Proposed catalytic cycle for enantioselective alkylation catalysed by an ion-paired chiral catalyst.
Figure 4: Derivatization of alkylation product 6a.


  1. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. (eds) Comprehensive Asymmetric Catalysis, and Supplements 1 and 2 (Springer, 1999, 2004).

    Google Scholar 

  2. Yoon, T. P. & Jacobsen, E. N. Privileged chiral catalysts. Science 299, 1691–1693 (2003).

    CAS  Article  Google Scholar 

  3. Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem. Int. Ed. 50, 114–137 (2011).

    CAS  Article  Google Scholar 

  4. Breit, B. Catalysts through self-assembly for combinatorial homogeneous catalysis. Pure Appl. Chem. 80, 855–860 (2008).

    CAS  Article  Google Scholar 

  5. Meeuwissen, J. & Reek, J. N. H. Supramolecular catalysis beyond enzyme mimics. Nature Chem. 2, 615–621 (2010).

    CAS  Article  Google Scholar 

  6. Dydio, P., Rubay, C., Gadzikwa, T., Lutz, M. & Reek, J. N. H. ‘Cofactor’-controlled enantioselective catalysis. J. Am. Chem. Soc. 133, 17176–17179 (2011).

    CAS  Article  Google Scholar 

  7. van Leeuwen, P. W. N. M., Rivillo, D., Raynal, M. & Freixa, Z. Enantioselective supramolecular catalysis induced by remote chiral diols. J. Am. Chem. Soc. 133, 18562–18565 (2011).

    CAS  Article  Google Scholar 

  8. Hamilton, G. L., Kang, E. J., Mba, M. & Toste, F. D. A powerful chiral counterion strategy for asymmetric transition metal catalysis. Science 317, 496–499 (2007).

    CAS  Article  Google Scholar 

  9. Mukherjee, S. & List, B. Chiral counteranions in asymmetric transition-metal catalysis: highly enantioselective Pd/Brønsted acid-catalyzed direct α-allylation of aldehydes. J. Am. Chem. Soc. 129, 11336–11337 (2007).

    CAS  Article  Google Scholar 

  10. Liao, S. & List, B. Asymmetric counteranion-directed transition-metal catalysis: enantioselective epoxidation of alkenes with manganese(III) salen phosphate complexes. Angew. Chem. Int. Ed. 49, 628–631 (2010).

    CAS  Article  Google Scholar 

  11. Jiang, G. & List, B. Direct asymmetric α-allylation of aldehydes with simple allylic alcohols enabled by the concerted action of three different catalysts. Angew. Chem. Int. Ed. 50, 9471–9474 (2011).

    CAS  Article  Google Scholar 

  12. Jiang, G., Halder, R., Fang, Y. & List, B. A highly enantioselective Overman rearrangement through asymmetric counteranion-directed palladium catalysis. Angew. Chem. Int. Ed. 50, 9752–9755 (2011).

    CAS  Article  Google Scholar 

  13. Okano, T., Harada, N. & Kiji, J. Transition metal phosphine complexes possessing phase transfer function. Preparation and reactivities of palladium complexes containing quaternary ammonium groups. Chem. Lett. 23, 1057–1060 (1994).

    Article  Google Scholar 

  14. Chisholm, D. M. & McIndoe, J. S. Charged ligands for catalyst immobilisation and analysis. Dalton Trans. 3933–3945 (2008).

  15. Yuan, H., Zhou, Z., Xiao, J., Liang, L. & Dai, L. Preparation of quarternary ammonium salt-tagged ferrocenylphosphine–imine ligands and their application to palladium-catalyzed asymmetric allylic substitution. Tetrahedron: Asymmetry 21, 1874–1884 (2010).

    CAS  Article  Google Scholar 

  16. Sawamura, M., Nakayama, Y., Tang, W.-M. & Ito, Y. Enantioselective allylation of nitro group-stabilized carbanions catalyzed by chiral crown ether phosphine–palladium complexes. J. Org. Chem. 61, 9090–9096 (1996).

    CAS  Article  Google Scholar 

  17. Shipchandler, M. T. The utility of nitroacetic acid and its esters in organic synthesis. Synthesis 666–686 (1979).

    Article  Google Scholar 

  18. Trost, B. M. & Van Vranken, D. L. Asymmetric transition metal-catalyzed allylic alkylations. Chem. Rev. 96, 395–422 (1996).

    CAS  Article  Google Scholar 

  19. Trost, B. M. & Crawley, M. L. Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem. Rev. 103, 2921–2943 (2003).

    CAS  Article  Google Scholar 

  20. Mohr, J. T. & Stoltz, B. M. Enantioselective Tsuji allylations. Chem. Asian J. 2, 1476–1491 (2007).

    CAS  Article  Google Scholar 

  21. Lu, Z. & Ma, S. Metal-catalyzed enantioselective allylation in asymmetric synthesis. Angew. Chem. Int. Ed. 47, 258–297 (2008).

    CAS  Article  Google Scholar 

  22. Nakoji, M., Kanayama, T., Okino, T. & Takemoto, Y. Chiral phosphine-free Pd-mediated asymmetric allylation of prochiral enolate with a chiral phase-transfer catalyst. Org. Lett. 3, 3329–3331 (2001).

    CAS  Article  Google Scholar 

  23. Cativiela, C. & Díaz-de-Villegas, M. D. Recent progress on the stereoselective synthesis of acyclic quaternary α-amino acids. Tetrahedron: Asymmetry 18, 569–623 (2007).

    CAS  Article  Google Scholar 

  24. Amatore, C. & Jutand, A. Role of dba in the reactivity of palladium(0) complexes generated in situ from mixtures of Pd(dba)2 and phosphines. Coord. Chem. Rev. 178–180, 511–528 (1998).

    Article  Google Scholar 

  25. Guillaneux, D., Zhao, S.-H., Samuel, O., Rainford, D. & Kagan, H. B. Nonlinear effects in asymmetric catalysis. J. Am. Chem. Soc. 116, 9430–9439 (1994).

    CAS  Article  Google Scholar 

Download references


Financial support was provided by the Funding Program for Next Generation World-Leading Researchers from JSPS (GR050) and the Global COE Program in Chemistry of Nagoya University.

Author information

Authors and Affiliations



K.O. and T.O. conceived and designed the study, and co-wrote the paper. K.O., M.I. and T.K. performed the experiments and analysed the data. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Takashi Ooi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4203 kb)

Supplementary information

Crystallographic data for compound 3b. (CIF 23 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ohmatsu, K., Ito, M., Kunieda, T. et al. Ion-paired chiral ligands for asymmetric palladium catalysis. Nature Chem 4, 473–477 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing