Abstract
The carbon–oxygen double bond of ketones (R2C=O) makes them among the most important organic compounds, but their homologues, heavy ketones with an E=O double bond (E = Si, Ge, Sn or Pb), had not been isolated as stable compounds. Their unavailability as monomeric molecules is ascribed to their high tendency for intermolecular oligomerization or polymerization via opening of the E=O double bond. Can such an intermolecular process be inhibited by bulky protecting groups? We now report that it can, with the first isolation of a monomeric germanium ketone analogue (Eind)2Ge=O (Eind = 1,1,3,3,5,5,7,7-octaethyl-s-hydrindacen-4-yl), stabilized by appropriately designed bulky Eind groups, with a planar tricoordinate germanium atom. Computational studies and chemical reactions suggest the Ge=O double bond is highly polarized with a contribution of a charge-separated form (Eind)2Ge+−O−. The germanone thus exhibits unique reactivities that are not observed with ordinary ketones, including the spontaneous trapping of CO2 gas to provide a cyclic addition product.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Isolation, bonding and reactivity of a monomeric stibine oxide
Nature Chemistry Open Access 23 March 2023
-
A monotopic aluminum telluride with an Al=Te double bond stabilized by N-heterocyclic carbenes
Nature Communications Open Access 27 November 2015
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Kapp, J., Remko, M. & Schleyer, P. v. R. H2XO and (CH3)2XO compounds (X = C, Si, Ge, Sn, Pb): double bonds vs carbene-like structures – can the metal compounds exist at all? J. Am. Chem. Soc. 118, 5745–5751 (1996).
Kapp, J., Remko, M. & Schleyer, P. v. R. Reactions of H2X=XH2 and H2X=O double bonds (X = Si, Ge, Sn, Pb): are 1,3-dioxa-2,4-dimetaletanes unusual molecules? Inorg. Chem. 36, 4241–4246 (1997).
Davidson, P. J. & Lappert, M. F. Stabilisation of metals in a low co-ordinative environment using the bis(trimethylsilyl)methyl ligand; coloured SnII and PbII alkyls, M[CH(SiMe3)2]2 . J. Chem. Soc. Chem. Commun. 317 (1973).
Brook, A. G., Abdesaken, F., Gutekunst, B., Gutekunst, G. & Kallury, R. K. A solid silaethene: isolation and characterization. J. Chem. Soc. Chem. Commun. 191–192 (1981).
West, R., Fink, M. J. & Michl, J. Tetramesityldisilene, a stable compound containing a silicon–silicon double bond. Science 214, 1343–1344 (1981).
Yoshifuji, M., Shima, I., Inamoto, N., Hirotsu, K. & Higuchi, T. Synthesis and structure of bis(2,4,6-tri-tert-butylphenyl)diphosphene: isolation of a true ‘phosphobenzene’. J. Am. Chem. Soc. 103, 4587–4589 (1981).
Ishida, S., Iwamoto, T., Kabuto, C. & Kira, M. A stable silicon-based allene analogue with a formally sp-hybridized silicon atom. Nature 421, 725–727 (2003).
Sekiguchi, A., Kinjo, R. & Ichinohe, M. A stable compound containing a silicon–silicon triple bond. Science 305, 1755–1757 (2004).
Wiberg, N., Vasisht, S. K., Fischer, G. & Mayer, P. Disilynes. III A relatively stable disilyne RSiSiR (R = SiMe(SitBu3)2). Z. Anorg. Allg. Chem. 630, 1823–1828 (2004).
Wang, Y. et al. A stable silicon(0) compound with a Si=Si double bond. Science 321, 1069–1071 (2008).
Abersfelder, K., White, A. J. P., Rzepa, H. S. & Scheschkewitz, D. A tricyclic aromatic isomer of hexasilabenzene. Science 327, 564–566 (2010).
Suzuki, K. et al. A planar rhombic charge-separated tetrasilacyclobutadiene. Science 331, 1306–1309 (2011).
Tokitoh, N., Matsumoto, T. & Okazaki, R. The chemistry of germanium-containing heavy ketones. Bull. Chem. Soc. Jpn 72, 1665–1684 (1999).
Okazaki, R. & Tokitoh, N. Heavy ketones, the heavier element congeners of a ketone. Acc. Chem. Res. 33, 625–630 (2000).
Tokitoh, N. & Okazaki, R. The Chemistry of Organic Germanium, Tin and Lead Compounds Vol. 2 (ed. Rappoport, Z.) 843–901 (Wiley, 2002).
Tokitoh, N., Matsumoto, T., Manmaru, K. & Okazaki, R. Synthesis and crystal structure of the first stable diarylgermanethione. J. Am. Chem. Soc. 115, 8855–8856 (1993).
Suzuki, H., Tokitoh, N., Nagase, S. & Okazaki, R. The first genuine silicon–sulfur double-bond compound: synthesis and crystal structure of a kinetically stabilized silanethione. J. Am. Chem. Soc. 116, 11578–11579 (1994).
Saito, M., Tokitoh, N. & Okazaki, R. The first kinetically stabilized stannaneselone and diselenastannirane: synthesis by deselenation of a tetraselenastannolane and structures. J. Am. Chem. Soc. 119, 11124–11125 (1997).
Suzuki, H., Tokitoh, N., Okazaki, R., Nagase, S. & Goto, M. Synthesis, structure, and reactivity of the first kinetically stabilized silanethione. J. Am. Chem. Soc. 120, 11096–11105 (1998).
Iwamoto, T., Sato, K., Ishida, S., Kabuto, C. & Kira, M. Synthesis, properties, and reactions of a series of stable dialkyl-substituted silicon–chalcogen doubly bonded compounds. J. Am. Chem. Soc. 128, 16914–16920 (2006).
Raabe, G. & Michl, J. The Chemistry of Organic Silicon Compounds Part 2 (eds Patai, S. & Rappoport, Z.) 1015–1142 (Wiley, 1989).
Fischer, R. C. & Power, P. P. π-Bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem. Rev. 110, 3877–3923 (2010).
Kipping, F. S. & Lloyd, L. L. Organic derivatives of silicon. Triphenylsilicol and alkyloxysilicon chlorides. J. Chem. Soc. Trans. 79, 449–459 (1901).
Barrau, J., Massol, M., Mesnard, D. & Satgé, J. Synthèse de 4-germa 1,3-dioxannes par insertion de dérivés carbonylés sur divers oxétannes germaniés. J. Organomet. Chem. 30, C67–C69 (1971).
Barrau, J., Escudié, J. & Satgé, J. Multiply bonded germanium species. Chem. Rev. 90, 283–319 (1990).
Veith, M., Becker, S. & Huch, V. A base-stabilized Ge–S double bond. Angew. Chem. Int. Ed. Engl. 28, 1237–1238 (1989).
Takeda, N., Tokitoh, N. & Okazaki, R. Reaction of a stable silylene–isocyanide complex with nitrile oxides: a new approach to the generation of a silanone. Chem. Lett. 244–245 (2000).
Iwamoto, T., Masuda, H., Ishida, S., Kabuto, C. & Kira, M. Diverse reactions of nitroxide–radical adducts of silylene, germylene, and stannylene. J. Organomet. Chem. 689, 1337–1341 (2004).
Ibrahim Al-Rafia, S. M., Lummis, P. A., Ferguson, M. J., McDonald, R. & Rivard, E. Low-coordinate germylene and stannylene heterocycles featuring sterically tunable bis(amido)silyl ligands. Inorg. Chem. 49, 9709–9717 (2010).
Tokitoh, N., Matsumoto, T. & Okazaki, R. Formation and reactions of the first diarylgermanone stable in solution. Chem. Lett. 1087–1088 (1995).
Jutzi, P., Schmidt, H., Neumann, B. & Stammler, H-G. Bis(2,4,6-tri-tert-butylphenyl)germylene reinvestigated: crystal structure, Lewis acid catalyzed C–H insertion, and oxidation to an unstable germanone. Organometallics 15, 741–746 (1996).
Matsumoto, T., Tokitoh, N. & Okazaki, R. First oxazagermete: synthesis, structure and thermal cycloreversion into a germanone. Chem. Commun. 1553–1554 (1997).
Wegner, G. L., Berger, R. J. F., Schier, A. & Schmidbaur, H. Ligand-protected strain-free diarylgermylenes. Organometallics 20, 418–423 (2001).
Pu, L., Hardman, N. J. & Power, P. P. Attempted isolation of heavier group 14 element ketone analogues: effect of O–H…π-Ar hydrogen bonding on geometry. Organometallics 20, 5105–5109 (2001).
Xiong, Y., Yao, S. & Driess, M. An isolable NHC-supported silanone. J. Am. Chem. Soc. 131, 7562–7563 (2009).
Yao, S., Xiong, Y. & Driess, M. From NHC→germylenes to stable NHC→germanone complexes. Chem. Commun. 6466–6468 (2009).
Xiong, Y., Yao, S., Müller, R., Kaupp, M. & Driess, M. From silicon(II)-based dioxygen activation to adducts of elusive dioxasiliranes and sila-ureas stable at room temperature. Nature Chem. 2, 577–580 (2010).
Yao, S., Xiong, Y., Wang, W. & Driess, M. Synthesis, structure, and reactivity of a pyridine-stabilized germanone. Chem. Eur. J. 17, 4890–4895 (2011).
Zabula, A. V. et al. Trapping of tin(II) and lead(II) homologues of carbon monoxide by a benzannulated lutidine-bridged bisstannylene. J. Am. Chem. Soc. 130, 5648–5649 (2008).
Fukazawa, A., Li, Y., Yamaguchi, S., Tsuji, H. & Tamao, K. Coplanar oligo(p-phenylenedisilenylene)s based on the octaethyl-substituted s-hydrindacenyl groups. J. Am. Chem. Soc. 129, 14164–14165 (2007).
Matsuo, T. et al. Synthesis and structures of a series of bulky ‘Rind-Br’ based on a rigid fused-ring s-hydrindacene skeleton. Bull. Chem. Soc. Jpn 84, 1178–1191 (2011).
Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. B 58, 380–388 (2002).
Matsumoto, T., Tokitoh, N. & Okazaki, R. The first kinetically stabilized germanethiones and germaneselones: syntheses, structures, and reactivities. J. Am. Chem. Soc. 121, 8811–8824 (1999).
Tokitoh, N., Matsumoto, T. & Okazaki, R. First stable germanetellones: syntheses and crystal structures of the heaviest germanium–chalcogen double-bond compound. J. Am. Chem. Soc. 119, 2337–2338 (1997).
Withnall, R. & Andrews, L. Matrix reactions of germane and oxygen atoms. Infrared spectroscopic evidence for germylene–water complex, germanone, germanol, hydroxygermylene, and germanic acid. J. Phys. Chem. 94, 2351–2357 (1990).
Trinquier, G., Pelissier, M., Saint-Roch, B. & Lavayssiere, H. Structure of germanone and germathione through ab initio calculations. J. Organomet. Chem. 214, 169–181 (1981).
Trinquier, G., Barthelat, J.-C. & Satgé, J. Double bonds vs. carbene-like unsaturations in germanium intermediates. J. Am. Chem. Soc. 104, 5931–5936 (1982).
Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).
Acknowledgements
We thank the Ministry of Education, Culture, Sports, Science and Technology of Japan for the Grant-in-Aid for Specially Promoted Research (No. 19002008). The numerical calculations were performed, in part, at the Research Center for Computational Science, Okazaki, Japan. We thank Y. Hongo, T. Nakamura and S. Kamiguchi (RIKEN) for their help with the mass spectrometry and Raman spectroscopy. We thank the RIKEN materials characterization team for the elemental analyses of the samples synthesized in this study. We also thank N. Tokitoh and M. Driess for their valuable discussions.
Author information
Authors and Affiliations
Contributions
L.L. and T.F. performed all the experiments. T.M. co-directed the project and designed the experiments. D.H. carried out the X-ray crystallographic analysis. H.F. and K. Tanaka performed the computational studies. K. Tamao directed the project. L.L., T.M. and K. Tamao co-wrote the paper. All authors contributed to discussions.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1529 kb)
Supplementary information
Crystallographic data for compound 1 (CIF 37 kb)
Supplementary information
Crystallographic data for compound 2 (CIF 36 kb)
Supplementary information
Crystallographic data for compound 3 (CIF 36 kb)
Supplementary information
Crystallographic data for compound 4 (CIF 46 kb)
Supplementary information
Crystallographic data for compound 5 (CIF 36 kb)
Supplementary information
Crystallographic data for compound 6 (CIF 44 kb)
Supplementary information
Crystallographic data for compound 7 (CIF 47 kb)
Supplementary information
Crystallographic data for compound 8 (CIF 23 kb)
Rights and permissions
About this article
Cite this article
Li, L., Fukawa, T., Matsuo, T. et al. A stable germanone as the first isolated heavy ketone with a terminal oxygen atom. Nature Chem 4, 361–365 (2012). https://doi.org/10.1038/nchem.1305
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.1305
This article is cited by
-
Isolation, bonding and reactivity of a monomeric stibine oxide
Nature Chemistry (2023)
-
A discrete antimony(v) oxide
Nature Chemistry (2023)
-
A monotopic aluminum telluride with an Al=Te double bond stabilized by N-heterocyclic carbenes
Nature Communications (2015)
-
Bonding analysis of telluroketones H2A = Te (A = C, Si, Ge)
Journal of Molecular Modeling (2014)
-
A heavier-element ketone at last
Nature Chemistry (2012)