Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multidimensional steric parameters in the analysis of asymmetric catalytic reactions

Abstract

Although asymmetric catalysis is universally dependent on spatial interactions to impart specific chirality on a given substrate, examination of steric effects in these catalytic systems remains empirical. Previous efforts by our group and others have seen correlation between steric parameters developed by Charton and simple substituents in both substrate and ligand; however, more complex substituents were not found to be correlative. Here, we review and compare the steric parameters common in quantitative structure activity relationships (QSAR), a common method for pharmaceutical function optimization, and how they might be applied in asymmetric catalysis, as the two fields are undeniably similar. We re-evaluate steric/enantioselection relationships, which we previously analysed with Charton steric parameters, using the more sophisticated Sterimol parameters developed by Verloop and co-workers in a QSAR context. Use of these Sterimol parameters led to strong correlations in numerous processes where Charton parameters had previously failed. Sterimol parameterization also allows for greater mechanistic insight into the key elements of asymmetric induction within these systems.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Visualization of the experimental basis of several steric parameters and comparison of their determined values.
Figure 2: NHK allylations of benzaldehyde and acetophenone using standard conditions.
Figure 3: The Charton steric parameter is experimentally based and has inherent limitations.
Figure 4: Reanalysis of the data shown in Fig. 2 using Sterimol parameters.
Figure 5: Examination of substrate effects in the desymmetrization of bisphenols.
Figure 6: Propargylation of acetophenone re-analysed using Sterimol parameters in place of Charton parameters.

References

  1. Knowles, W. S. Asymmetric hydrogenation. Acc. Chem. Res. 16, 106–112 (1983).

    CAS  Article  Google Scholar 

  2. Cheong, P. H.-Y., Legault, C. Y., Um, J. M., Çelebi-Ölçüm, N. & Houk, K. N. Quantum mechanical investigations of organocatalysis: mechanisms, reactivities, and selectivities. Chem. Rev. 111, 5042–5137 (2011).

    CAS  Article  Google Scholar 

  3. Walsh, P. J. & Kozlowski, M. C. Fundamentals of Asymmetric Catalysis (University Science Books, 2009).

    Google Scholar 

  4. Houk, K. N. & Cheong, P. H.-Y. Computational prediction of small-molecule catalysts. Nature 455, 309–313 (2008).

    CAS  Article  Google Scholar 

  5. Denmark, S. E., Gould, N. D. & Wolf, L. M. A systematic investigation of quaternary ammonium ions as asymmetric phase-transfer catalysts. Application of quantitative structure activity/selectivity relationships. J. Org. Chem. 76, 4337–4357 (2011).

    CAS  Article  Google Scholar 

  6. Denmark, S. E., Gould, N. D. & Wolf, L. M. A systematic investigation of quaternary ammonium ions as asymmetric phase-transfer catalysts. Synthesis of catalyst libraries and evaluation of catalyst activity. J. Org. Chem. 76, 4260–4336 (2011).

    CAS  Article  Google Scholar 

  7. Maldonado, A. G. & Rothenberg, G. Predictive modeling in homogeneous catalysis: a tutorial. Chem. Soc. Rev. 39, 1891–1902 (2010).

    CAS  Article  Google Scholar 

  8. Ianni, J. C., Annamalai, V., Phuan, P.-W., Panda, M. & Kozlowski, M. C. A priori theoretical prediction of selectivity in asymmetric catalysis: design of chiral catalysts by using quantum molecular interaction fields. Angew. Chem. Int. Ed. 45, 5502–5505 (2006).

    CAS  Article  Google Scholar 

  9. Kozlowski, M. C. & Panda, M. Computer-aided design of chiral ligands: Part I. Database search methods to identify chiral ligand types for asymmetric reactions. J. Mol. Graphics Modell. 20, 399–409 (2002).

    CAS  Article  Google Scholar 

  10. Kozlowski, M. C. & Panda, M. Computer-aided design of chiral ligands. Part 2. Functionality mapping as a method to identify stereocontrol elements for asymmetric reactions. J. Org. Chem. 68, 2061–2076 (2003).

    CAS  Article  Google Scholar 

  11. Kozlowski, M. C., Waters, S. P., Skudlarek, J. W. & Evans, C. A. Computer-aided design of chiral ligands. Part III. A novel ligand for asymmetric allylation designed using computational techniques. Org. Lett. 4, 4391–4393 (2002).

    CAS  Article  Google Scholar 

  12. Lipkowitz, K. B. & Kozlowski, M. C. Understanding stereoinduction in catalysis via computer: new tools for asymmetric synthesis. Synlett. 2003, 1547–1565 (2003).

    Article  Google Scholar 

  13. Norrby, P.-O., Rasmussen, T., Haller, J., Strassner, T. & Houk, K. N. Rationalizing the stereoselectivity of osmium tetroxide asymmetric dihydroxylations with transition state modeling using quantum mechanics-guided molecular mechanics. J. Am. Chem. Soc. 121, 10186–10192 (1999).

    CAS  Article  Google Scholar 

  14. Oslob, J. D., Aakermark, B., Helquist, P. & Norrby, P.-O. Steric influences on the selectivity in palladium-catalyzed allylation. Organometallics 16, 3015–3021 (1997).

    CAS  Article  Google Scholar 

  15. Brown, J. M. & Deeth, R. J. Is enantioselectivity predictable in asymmetric catalysis? Angew. Chem. Int. Ed. 48, 4476–4479 (2009).

    CAS  Article  Google Scholar 

  16. Knowles, R. R. & Jacobsen, E. N. Attractive noncovalent interactions in asymmetric catalysis: links between enzymes and small molecule catalysts. Proc. Natl Acad. Sci. USA 107, 20678–20685 (2010).

    CAS  Article  Google Scholar 

  17. Uyeda, C. & Jacobsen, E. N. Transition-state charge stabilization through multiple non-covalent interactions in the guanidinium-catalyzed enantioselective Claisen rearrangement. J. Am. Chem. Soc. 133, 5062–5075 (2011).

    CAS  Article  Google Scholar 

  18. Zuend, S. J. & Jacobsen, E. N. Mechanism of amido-thiourea catalyzed enantioselective imine hydrocyanation: transition state stabilization via multiple non-covalent interactions. J. Am. Chem. Soc. 131, 15358–15374 (2009).

    CAS  Article  Google Scholar 

  19. Jonsson, S., Odille, F. G. J., Norrby, P.-O. & Warnmark, K. Modulation of the reactivity, stability and substrate- and enantioselectivity of an epoxidation catalyst by noncovalent dynamic attachment of a receptor functionality—aspects on the mechanism of the Jacobsen–Katsuki epoxidation applied to a supramolecular system. Org. Biomol. Chem. 4, 1927–1948 (2006).

    CAS  Article  Google Scholar 

  20. Lipkowitz, K. B., D'Hue, C. A., Sakamoto, T. & Stack, J. N. Stereocartography: a computational mapping technique that can locate regions of maximum stereoinduction around chiral catalysts. J. Am. Chem. Soc. 124, 14255–14267 (2002).

    CAS  Article  Google Scholar 

  21. Lipkowitz, K. B., Sakamoto, T. & Stack, J. Using stereocartography for predicting efficacy of stereoinduction by chiral catalysts. Chirality 15, 759–765 (2003).

    CAS  Article  Google Scholar 

  22. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis I–III Vol. 1 (Springer, 1999).

    Book  Google Scholar 

  23. Miller, J. J. & Sigman, M. S. Quantitatively correlating the effect of ligand–substituent size in asymmetric catalysis using linear free energy relationships. Angew. Chem. Int. Ed. 47, 771–774 (2008).

    CAS  Article  Google Scholar 

  24. Miller, J. J. & Sigman, M. S. Design and synthesis of modular oxazoline ligands for the enantioselective chromium-catalyzed addition of allyl bromide to ketones. J. Am. Chem. Soc. 129, 2752–2753 (2007).

    CAS  Article  Google Scholar 

  25. Miller, J. J., Rajaram, S., Pfaffenroth, C. & Sigman, M. S. Synthesis of amine functionalized oxazolines with applications in asymmetric catalysis. Tetrahedron 65, 3110–3119 (2009).

    CAS  Article  Google Scholar 

  26. Quintard, A. & Alexakis, A. 1,2-Sulfone rearrangement in organocatalytic reactions. Org. Biomol. Chem. 9, 1407–1418 (2011).

    CAS  Article  Google Scholar 

  27. Quintard, A., Alexakis, A. & Mazet, C. Access to high levels of molecular complexity by one-pot iridium/enamine asymmetric catalysis. Angew. Chem. Int. Ed. 50, 2354–2358 (2011).

    CAS  Article  Google Scholar 

  28. Mantilli, L., Gérard, D., Torche, S., Besnard, C. & Mazet, C. Improved catalysts for the iridium-catalyzed asymmetric isomerization of primary allylic alcohols based on charton analysis. Chem. Eur. J. 16, 12736–12745 (2010).

    CAS  Article  Google Scholar 

  29. Hansch, C. & Leo, A. Exploring QSAR: Fundamentals and Applications in Chemistry and Biology (American Chemical Society, 1995).

    Google Scholar 

  30. Verloop, A. in Drug Design Vol. III (ed. Ariens, E. J.) 133 (Academic Press, 1976).

    Google Scholar 

  31. Winstein, S. & Holness, N. J. Neighboring varbon and hydrogen. XIX. t-Butylcyclohexyl derivatives. Quantitative conformational analysis. J. Am. Chem. Soc. 77, 5562–5578 (1955).

    CAS  Article  Google Scholar 

  32. Bott, G., Field, L. D. & Sternhell, S. Steric effects. A study of a rationally designed system. J. Am. Chem. Soc. 102, 5618–5626 (1980).

    CAS  Article  Google Scholar 

  33. Adams, R. & Yuan, H. C. The stereochemistry of diphenyls and analogous compounds. Chem. Rev. 12, 261–338 (1933).

    CAS  Article  Google Scholar 

  34. Niksch, T., Görls, H. & Weigand, W. The extension of the solid-angle concept to bidentate ligands. Eur. J. Inorg. Chem. 95–105 (2010).

  35. Tolman, C. A. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem. Rev. 77, 313–348 (1977).

    CAS  Article  Google Scholar 

  36. Fey, N. et al. Computational descriptors for chelating P,P- and P,N-donor ligands 1. Organometallics 27, 1372–1383 (2008).

    CAS  Article  Google Scholar 

  37. Jover, J. S. et al. Expansion of the ligand knowledge base for monodentate P-donor ligands (LKB-P). Organometallics 29, 6245–6258 (2010).

    CAS  Article  Google Scholar 

  38. Taft, R. W. Jr. Polar and steric substituent constants for aliphatic and o-benzoate groups from rates of esterification and hydrolysis of esters. J. Am. Chem. Soc. 74, 3120–3128 (1952).

    CAS  Article  Google Scholar 

  39. Taft, R. W. Jr. Linear steric energy relationships. J. Am. Chem. Soc. 75, 4538–4539 (1953).

    CAS  Article  Google Scholar 

  40. Hammett, L. P. Some relations between reaction rates and equilibrium constants. Chem. Rev. 17, 125–136 (1935).

    CAS  Article  Google Scholar 

  41. Fujita, T., Takayama, C. & Nakajima, M. Nature and composition of Taft–Hancock steric constants. J. Org. Chem. 38, 1623–1630 (1973).

    CAS  Article  Google Scholar 

  42. Hancock, C. K., Meyers, E. A. & Yager, B. J. Quantitative separation of hyperconjugation effects from steric substituent constants. J. Am. Chem. Soc. 83, 4211–4213 (1961).

    CAS  Article  Google Scholar 

  43. MacPhee, J. A., Panaye, A. & Dubois, J. E. Steric effects. 4. Multiparameter correlation models. Geometrical and proximity site effects for carboxylic acid esterification and related reactions. J. Org. Chem. 45, 1164–1166 (1980).

    CAS  Article  Google Scholar 

  44. Sotomatsu, T. & Fujita, T. The steric effect of ortho substituents on the acidic hydrolysis of benzamides. J. Org. Chem. 54, 4443–4448 (1989).

    CAS  Article  Google Scholar 

  45. Charton, M. Steric effects. I. Esterification and acid-catalyzed hydrolysis of esters. J. Am. Chem. Soc. 97, 1552–1556 (1975).

    CAS  Article  Google Scholar 

  46. Charton, M. Steric effects. II. Base-catalyzed ester hydrolysis. J. Am. Chem. Soc. 97, 3691–3693 (1975).

    CAS  Article  Google Scholar 

  47. Charton, M. Steric effects. 7. Additional V constants. J. Org. Chem. 41, 2217–2220 (1976).

    CAS  Article  Google Scholar 

  48. Kutter, E. & Hansch, C. Steric parameters in drug design. Monoamine oxidase inhibitors and antihistamines. J. Med. Chem. 12, 647–652 (1969).

    CAS  Article  Google Scholar 

  49. Verloop, A. & Tipker, J. in Biological Activity and Chemical Structure (ed. Buisman, J. A.) 63 (Elsevier, 1977).

    Google Scholar 

  50. Verloop, A. & Tipker, J. in QSAR in Drug Dosing and Toxicology (ed. Hadzi. B. & Jerman-Blazic, B.) 97 (Elsevier, 1987).

    Google Scholar 

  51. Verloop, A. in IUPAC Pesticide Chemistry Vol. 1 (ed. Miyamoto, J.) 339 (Pergamon, 1983).

    Google Scholar 

  52. Pauling, L. & Corey, R. B. Atomic coordinates and structure factors for two helical configurations of polypeptide chains. Proc. Natl Acad. Sci. USA 37, 235–240 (1951).

    CAS  Article  Google Scholar 

  53. Pauling, L. & Corey, R. B. Configurations of polypeptide chains with favored orientations around single bonds. Proc. Natl Acad. Sci. USA 37, 729–740 (1951).

    CAS  Article  Google Scholar 

  54. Jones, J. E. On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. Proc. R. Soc. A 106, 441–462 (1924).

    CAS  Article  Google Scholar 

  55. Allinger, N. L., Yuh, Y. H. & Lii, J. H. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 111, 8551–8566 (1989).

    CAS  Article  Google Scholar 

  56. Lii, J. H. & Allinger, N. L. Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals’ potentials and crystal data for aliphatic and aromatic hydrocarbons. J. Am. Chem. Soc. 111, 8576–8582 (1989).

    CAS  Article  Google Scholar 

  57. Hammett, L. P. Physical Organic Chemistry (McGraw-Hill, 1940).

    Google Scholar 

  58. Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry (University Science Books, 2006).

    Google Scholar 

  59. Jaffé, H. H. A reexamination of the Hammett equation. Chem. Rev. 53, 191–261 (1953).

    Article  Google Scholar 

  60. Johnson, C. D. The Hammett Equation (University Press, 1973).

    Google Scholar 

  61. Exner, O. Advances in Linear Free-Energy Relationships (Plenum, 1972).

    Google Scholar 

  62. Swain, C. G. & Lupton, E. C. Field and resonance components of substituent effects. J. Am. Chem. Soc. 90, 4328–4337 (1968).

    CAS  Article  Google Scholar 

  63. Swain, C. G., Unger, S. H., Rosenquist, N. R. & Swain, M. S. Substituent effects on chemical reactivity. Improved evaluation of field and resonance components. J. Am. Chem. Soc. 105, 492–502 (1983).

    CAS  Article  Google Scholar 

  64. Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    CAS  Article  Google Scholar 

  65. Sigman, M. S. & Miller, J. J. Examination of the role of Taft-type steric parameters in asymmetric catalysis. J. Org. Chem. 74, 7633–7643 (2009).

    CAS  Article  Google Scholar 

  66. Deming, S. N. & Morgan, S. L. Experimental Design: A Chemometric Approach, 2nd edn (Elsevier, 1993).

    Google Scholar 

  67. Gustafson, J. L., Sigman, M. S. & Miller, S. J. Linear free-energy relationship analysis of a catalytic desymmetrization reaction of a diarylmethane-bis(phenol). Org. Lett. 12, 2794–2797 (2010).

    CAS  Article  Google Scholar 

  68. Lewis, C. A. et al. A case of remote asymmetric induction in the peptide-catalyzed desymmetrization of a bis(phenol). J. Am. Chem. Soc. 130, 16358–16365 (2008).

    CAS  Article  Google Scholar 

  69. Harper, K. C. & Sigman, M. S. Predicting and optimizing asymmetric catalyst performance using the principles of experimental design and steric parameters. Proc. Natl Acad. Sci. USA 108, 2179–2183 (2011).

    CAS  Article  Google Scholar 

  70. Harper, K. C. & Sigman, M. S. Three-dimensional correlation of steric and electronic free energy relationships guides asymmetric propargylation. Science 333, 1875–1878 (2011).

    CAS  Article  Google Scholar 

  71. Palucki, M., Finney, N. S., Pospisil, P. J., Guler, M. L., Ishida, T. & Jacobsen, E. N. The mechanistic basis for electronic effects on enantioselectivity in the (salen)Mn(III)-catalyzed epoxidation reaction. J. Am. Chem. Soc. 120, 948–954 (1998).

    CAS  Article  Google Scholar 

  72. Jensen, K. H., Webb, J. D. & Sigman, M. S. Advancing the mechanistic understanding of an enantioselective palladium-catalyzed alkene difunctionalization reaction. J. Am. Chem. Soc. 132, 17471–17482 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Joel Harris for critical discussions on data analysis and Scott Miller for access to data and insightful discussions regarding this work. Thanks also go to Marisa Kozlowski for introducing us to Sterimol parameters. This work was supported by the National Science Foundation (CHE-0749506 and CHE-1110599).

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Matthew S. Sigman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1665 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harper, K., Bess, E. & Sigman, M. Multidimensional steric parameters in the analysis of asymmetric catalytic reactions. Nature Chem 4, 366–374 (2012). https://doi.org/10.1038/nchem.1297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1297

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing