Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures

Subjects

Abstract

Green plants convert CO2 to sugar for energy storage via photosynthesis. We report a novel catalyst that uses CO2 and hydrogen to store energy in formic acid. Using a homogeneous iridium catalyst with a proton-responsive ligand, we show the first reversible and recyclable hydrogen storage system that operates under mild conditions using CO2, formate and formic acid. This system is energy-efficient and green because it operates near ambient conditions, uses water as a solvent, produces high-pressure CO-free hydrogen, and uses pH to control hydrogen production or consumption. The extraordinary and switchable catalytic activity is attributed to the multifunctional ligand, which acts as a proton-relay and strong π-donor, and is rationalized by theoretical and experimental studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reversible H2 storage is achieved by switching the pH to protonate or deprotonate the catalyst.
Figure 2: Crystal structure of 2[Cl2]2+ and reversible formation of [2(OH2)2]4+ and 2′(OH2)2.
Figure 3: Proposed mechanism and gas-phase free energy calculations for 2′(OH2)2 after it loses protons and water.
Figure 4: Variation of the rate of H2 evolution (left y-axis, blue) with pH compared to the ionization of the thbpym ligand (right y-axis, red).

References

  1. Mikkelsen, M., Jorgensen, M. & Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3, 43–81 (2010).

    Article  CAS  Google Scholar 

  2. Arakawa, H. et al. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem. Rev. 101, 953–996 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Sakakura, T., Choi, J. C. & Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 107, 2365–2387 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Fukuzumi, S. Bioinspired energy conversion systems for hydrogen production and storage. Eur. J. Inorg. Chem. 1351–1362 (2008).

    Article  CAS  Google Scholar 

  5. Jessop, P. G., Joo, F. & Tai, C. C. Recent advances in the homogeneous hydrogenation of carbon dioxide. Coord. Chem. Rev. 248, 2425–2442 (2004).

    Article  CAS  Google Scholar 

  6. Morris, A. J., Meyer, G. J. & Fujita, E. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc. Chem. Res. 42, 1983–1994 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Benson, E. E., Kubiak, C. P., Sathrum, A. J. & Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Doherty, M. D., Grills, D. C., Muckerman, J. T., Polyansky, D. E. & Fujita, E. Toward more efficient photochemical CO2 reduction: use of scCO2 or photogenerated hydrides. Coord. Chem. Rev. 254, 2472–2482 (2010).

    Article  CAS  Google Scholar 

  9. Jacobson, M. Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2, 148–173 (2009).

    Article  CAS  Google Scholar 

  10. Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Turner, J. A. A realizable renewable energy future. Science 285, 687–689 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Schlapbach, L. & Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Weidenthaler, C. & Felderhoff, M. Solid-state hydrogen storage for mobile applications: quo vadis? Energy Environ. Sci. 4, 2495–2502 (2011).

    Article  CAS  Google Scholar 

  14. Enthaler, S., von Langermann, J. & Schmidt, T. Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage? Energy Environ. Sci. 3, 1207–1217 (2010).

    Article  CAS  Google Scholar 

  15. Himeda, Y. Conversion of CO2 into formate by homogeneously catalyzed hydrogenation in water: tuning catalytic activity and water solubility through the acid–base equilibrium of the ligand. Eur. J. Inorg. Chem. 3927–3941 (2007).

  16. Inoue, Y., Izumida, H., Sasaki, Y. & Hashimoto, H. Catalytic fixation of carbon dioxide to formic acid by transition metal complexes under mild conditions. Chem. Lett. 863–864 (1976).

  17. Inoue, Y., Sasaki, Y. & Hashimoto, H. Synthesis of of formates from alcohols, carbon dioxide, and hydrogen catalyzed by a combination of group 8 transition metal complexes and tertiary amines. J. Chem. Soc. Chem. Commun. 718–719 (1975).

  18. Jessop, P. G., Ikariya, T. & Noyori, R. Homogeneous hydrogenation of carbon dioxide. Chem. Rev. 95, 259–272 (1995).

    Article  CAS  Google Scholar 

  19. Jessop, P. G., Ikariya, T. & Noyori, R. Homogeneous catalytic-hydrogenation of supercritical carbon-dioxide. Nature 368, 231–233 (1994).

    Article  CAS  Google Scholar 

  20. Rice, C. et al. Direct formic acid fuel cells. J. Power Source 111, 83–89 (2002).

    Article  CAS  Google Scholar 

  21. Himeda, Y., Miyazawa, S. & Hirose, T. Interconversion between formic acid and H2/CO2 using rhodium and ruthenium catalysts for CO2 fixation and H2 storage. ChemSusChem 4, 487–493 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Himeda, Y. Highly efficient hydrogen evolution by decomposition of formic acid using an iridium catalyst with 4,4′-dihydroxy-2,2′-bipyridine. Green Chem. 11, 2018–2022 (2009).

    Article  CAS  Google Scholar 

  23. Fellay, C., Dyson, P. J. & Laurenczy, G. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew. Chem. Int. Ed. 47, 3966–3968 (2008).

    Article  CAS  Google Scholar 

  24. Himeda, Y. et al. pH-dependent catalytic activity and chemoselectivity in transfer hydrogenation catalyzed by iridium complex with 4,4′-dihydroxy-2,2′-bipyridine. Chem. Eur. J. 14, 11076–11081 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H. & Kasuga, K. Simultaneous tuning of activity and water solubility of complex catalysts by acid–base equilibrium of ligands for conversion of carbon dioxide. Organometallics 26, 702–712 (2007).

    Article  CAS  Google Scholar 

  26. Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H., Arakawa, H. & Kasuga, K. Half-sandwich complexes with 4,7-dihydroxy-1,10-phenanthroline: water-soluble, highly efficient catalysts for hydrogenation of bicarbonate attributable to the generation of an oxyanion on the catalyst ligand. Organometallics 23, 1480–1483 (2004).

    Article  CAS  Google Scholar 

  27. Schmeier, T. J., Dobereiner, G. E., Crabtree, R. H. & Hazari, N. Secondary coordination sphere interactions facilitate the insertion step in an iridium(III) CO2 reduction catalyst. J. Am. Chem. Soc. 133, 9274–9277 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Langer, R. et al. Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity. Angew. Chem. Int. Ed. 50, 9948–9952 (2011).

    Article  CAS  Google Scholar 

  29. Fukuzumi, S., Kobayashi, T. & Suenobu, T. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution. ChemSusChem 1, 827–834 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka, R., Yamashita, M. & Nozaki, K. Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. J. Am. Chem. Soc. 131, 14168–14169 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Boddien, A. et al. CO2‘Neutral’ hydrogen storage based on bicarbonates and formates. Angew. Chem. Int. Ed. 50, 6411–6414 (2011).

    Article  CAS  Google Scholar 

  32. Boddien, A. et al. Iron-catalyzed hydrogen production from formic acid. J. Am. Chem. Soc. 132, 8924–8934 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Federsel, C. et al. A well-defined iron catalyst for the reduction of bicarbonates and carbon dioxide to formates, alkyl formates, and formamides. Angew. Chem. Int. Ed. 49, 9777–9780 (2010).

    Article  CAS  Google Scholar 

  34. Loges, B., Boddien, A., Gartner, F., Junge, H. & Beller, M. Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials. Top. Catal. 53, 902–914 (2010).

    Article  CAS  Google Scholar 

  35. Boddien, A. et al. Continuous hydrogen generation from formic acid: highly active and stable ruthenium catalysts. Adv. Synth. Catal. 351, 2517–2520 (2009).

    Article  CAS  Google Scholar 

  36. Junge, H. et al. Improved hydrogen generation from formic acid. Tetrahedron Lett. 50, 1603–1606 (2009).

    Article  CAS  Google Scholar 

  37. Boddien, A. et al. Hydrogen storage in formic acid–amine adducts. Chimia 65, 214–218 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Fukuzumi, S., Yamada, Y., Suenobu, T., Ohkubo, K. & Kotani, H. Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts. Energy Environ. Sci. 4, 2754–2766 (2011).

    Article  CAS  Google Scholar 

  39. Urakawa, A., Jutz, F., Laurenczy, G. & Baiker, A. Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: a DFT and high-pressure spectroscopic investigation. Chem. Eur. J. 13, 3886–3899 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Elek, J., Nadasdi, L., Papp, G., Laurenczy, G. & Joo, F. Homogeneous hydrogenation of carbon dioxide and bicarbonate in aqueous solution catalyzed by water-soluble ruthenium(II) phosphine complexes. Appl. Catal. A 255, 59–67 (2003).

    Article  CAS  Google Scholar 

  41. Laurenczy, G., Joo, F. & Nadasdi, L. Formation and characterization of water-soluble hydrido-ruthenium(II) complexes of 1,3,5-triaza-7-phosphaadamantane and their catalytic activity in hydrogenation of CO2 and HCO3 in aqueous solution. Inorg. Chem. 39, 5083–5088 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Morris, D. J., Clarkson, G. J. & Wills, M. Insights into hydrogen generation from formic acid using ruthenium complexes. Organometallics 28, 4133–4140 (2009).

    Article  CAS  Google Scholar 

  43. Tedsree, K. et al. Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst. Nature Nanotech. 6, 302–307 (2011).

    Article  CAS  Google Scholar 

  44. Azua, A., Sanz, S. & Peris, E. Water-soluble Ir-III N-heterocyclic carbene based catalysts for the reduction of CO2 to formate by transfer hydrogenation and the deuteration of aryl amines in water. Chem. Eur. J. 17, 3963–3967 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Sanz, S., Azua, A. & Peris, E. ‘(η6-arene)Ru(bis-NHC)’ complexes for the reduction of CO2 to formate with hydrogen and by transfer hydrogenation with iPrOH. Dalton Trans. 39, 6339–6343 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Sanz, S., Benitez, M. & Peris, E. A new approach to the reduction of carbon dioxide: CO2 reduction to formate by transfer hydrogenation in iPrOH. Organometallics 29, 275–277 (2010).

    Article  CAS  Google Scholar 

  47. Papp, G., Csorba, J., Laurenczy, G. & Joó, F. A charge/discharge device for chemical hydrogen storage and generation. Angew. Chem. Int. Ed. 50, 10433–10435 (2011).

    Article  CAS  Google Scholar 

  48. DuBois, D. L. & Bullock, R. M. Molecular electrocatalysts for the oxidation of hydrogen and the production of hydrogen—the role of pendant amines as proton relays. Eur. J. Inorg. Chem. 1017–1027 (2011).

  49. Dubois, M. R. & Dubois, D. L. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Acc. Chem. Res. 42, 1974–1982 (2009).

    Article  PubMed  CAS  Google Scholar 

  50. Yang, J. Y. et al. Mechanistic insights into catalytic H2 oxidation by Ni complexes containing a diphosphine ligand with a positioned amine base. J. Am. Chem. Soc. 131, 5935–5945 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. DuBois, M. R. & DuBois, D. L. The role of pendant bases in molecular catalysts for H2 oxidation and production. C. R. Chim. 11, 805–817 (2008).

    Article  CAS  Google Scholar 

  52. Boddien, A. et al. Efficient dehydrogenation of formic acid using an iron catalyst. Science 333, 1733–1736 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Crabtree, R. H. Multifunctional ligands in transition metal catalysis. New J. Chem. 35, 18–23 (2011).

    Article  CAS  Google Scholar 

  54. Dobereiner, G. E. et al. Iridium-catalyzed hydrogenation of N-heterocyclic compounds under mild conditions by an outer-sphere pathway. J. Am. Chem. Soc. 133, 7547–7562 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, D. H., Patel, B. P., Clot, E., Eisenstein, O. & Crabtree, R. H. Heterolytic dihydrogen activation in an iridium complex with a pendant basic group. Chem. Commun. 297–298 (1999).

  56. Dixon, H. B. F. Relations between the dissociation-constants of dibasic acids. Biochem. J. 253, 911–913 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leitner, W., Dinjus, E. & Gaßner, F. Activation of carbon dioxide: IV. Rhodium-catalysed hydrogenation of carbon dioxide to formic acid. J. Organomet. Chem. 475, 257–266 (1994).

    Article  CAS  Google Scholar 

  58. Crabtree, R. H., Segmuller, B. E. & Uriarte, R. J. T1s and proton NMR integration in metal hydride complexes. Inorg. Chem. 24, 1949–1950 (1985).

    Article  CAS  Google Scholar 

  59. Yang, X. Z. Hydrogenation of carbon dioxide catalyzed by PNP pincer iridium, iron, and cobalt complexes: a computational design of base metal catalysts. ACS Catal. 1, 849–854 (2011).

    Article  CAS  Google Scholar 

  60. Ogo, S., Kabe, R., Hayashi, H., Harada, R. & Fukuzumi, S. Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step. Dalton Trans. 4657–4663 (2006).

  61. Ahlquist, M. S. G. Iridium catalyzed hydrogenation of CO2 under basic conditions—mechanistic insight from theory. J. Mol. Catal. A 324, 3–8 (2010).

    Article  CAS  Google Scholar 

  62. Govindaswamy, P. et al. Mono and dinuclear rhodium, iridium and ruthenium complexes containing chelating 2,2′-bipyrimidine ligands: synthesis, molecular structure, electrochemistry and catalytic properties. J. Organomet. Chem. 692, 3664–3675 (2007).

    Article  CAS  Google Scholar 

  63. White, C., Yates, A., Maitlis, P. M. & Heinekey, D. M. 5-Pentamethylcyclopentadienyl)Rhodium and -Iridium Compounds (Wiley, 2007).

    Google Scholar 

  64. Gaussian 09 RevB.01, Gaussian Inc., Wallingford, CT.

  65. Graf, E. & Leitner, W. Direct formation of formic-acid from carbon dioxide and dihidrogen using the (Rh(COD)Cl)2 Ph2P(CH2)4PPh2 catalyst system. J. Chem. Soc. Chem. Commun. 623–624 (1992).

  66. Joo, F., Laurenczy, G., Nadasdi, L. & Elek, J. Homogeneous hydrogenation of aqueous hydrogen carbonate to formate under exceedingly mild conditions—a novel possibility of carbon dioxide activation. Chem. Commun. 971–972 (1999).

Download references

Acknowledgements

The work at Brookhaven National Laboratory is funded under contract DE-AC02-98CH10886 with the US Department of Energy and supported by its Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences. J.F.H. acknowledges support as a BNL Goldhaber Distinguished Fellow. Y.H. acknowledges support from the Japanese Ministry of Economy, Trade, and Industry. R.P. and B.H. were supported by the CCHF 101 (grant no. DE-SC0001298).

Author information

Authors and Affiliations

Authors

Contributions

J.F.H. and Y.H. conceived the project, carried out the bulk of the experimental work and wrote the manuscript. W.W. made significant contributions to the synthesis and characterization. R.P. and B.H. provided the thbpym ligand. D.J.S. solved the crystal structure. J.T.M. carried out theoretical work and E.F. oversaw all work.

Corresponding authors

Correspondence to Jonathan F. Hull, Yuichiro Himeda or Etsuko Fujita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hull, J., Himeda, Y., Wang, WH. et al. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nature Chem 4, 383–388 (2012). https://doi.org/10.1038/nchem.1295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1295

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing