Abstract
The most common motif in uranium chemistry is the d0f0 uranyl ion [UO2]2+ in which the oxo groups are rigorously linear and inert. Alternative geometries, such as the cis-uranyl, have been identified theoretically and implicated in oxo-atom transfer reactions that are relevant to environmental speciation and nuclear waste remediation. Single electron reduction is now known to impart greater oxo-group reactivity, but with retention of the linear OUO motif, and reactions of the oxo groups to form new covalent bonds remain rare. Here, we describe the synthesis, structure, reactivity and magnetic properties of a binuclear uranium–oxo complex. Formed through a combination of reduction and oxo-silylation and migration from a trans to a cis position, the new butterfly-shaped Si–OUO2UO–Si molecule shows remarkably strong UV–UV coupling and chemical inertness, suggesting that this rearranged uranium oxo motif might exist for other actinide species in the environment, and have relevance to the aggregation of actinide oxide clusters.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Creation of an unexpected plane of enhanced covalency in cerium(III) and berkelium(III) terpyridyl complexes
Nature Communications Open Access 10 December 2021
-
Molecular and electronic structure of terminal and alkali metal-capped uranium(V) nitride complexes
Nature Communications Open Access 20 December 2016
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Denning, R. G. Electronic structure and bonding in actinyl ions and their analogs. J. Phys. Chem. A 111, 4125–4143 (2007).
Arnold, P. L., Love, J. B. & Patel, D. Pentavalent uranyl complexes. Coord. Chem. Rev. 253, 1973–1978 (2009).
Schettini, M. F., Wu, G. & Hayton, T. W. Coordination of N-donor ligands to a uranyl(V) beta-diketiminate complex. Inorg. Chem. 48, 11799–11808 (2009).
Berthet, J-C., Siffredi, G., Thuéry, P. & Ephritikhine, M. Easy access to stable pentavalent uranyl complexes. Chem. Commun. 3184–3185 (2006).
Nocton, G. et al. Synthesis, structure, and bonding of stable complexes of pentavalent uranyl. J. Am. Chem. Soc. 132, 495–508 (2010).
Steele, H. & Taylor, R. J. A theoretical study of the inner-sphere disproportionation reaction mechanism of the pentavalent actinyl ions. Inorg. Chem. 46, 6311–6318 (2007).
Suzuki, Y., Kelly, S. D., Kemner, K. M. & Banfield, J. F. Radionuclide contamination: nanometre-size products of uranium bioreduction. Nature 419, 134 (2002).
Ikeda, A. et al. Comparative study of uranyl(VI) and -(V) carbonato complexes in an aqueous solution. Inorg. Chem. 46, 4212–4219 (2007).
Burdet, F., Pecaut, J. & Mazzanti, M. Isolation of a tetrameric cation–cation complex of pentavalent uranyl. J. Am. Chem. Soc. 128, 16512–16513 (2006).
Nocton, G., Horeglad, P., Pecaut, J. & Mazzanti, M. Polynuclear cation–cation complexes of pentavalent uranyl: relating stability and magnetic properties to structure. J. Am. Chem. Soc. 130, 16633–16645 (2008).
Arnold, P. L., Blake, A. J., Wilson, C. & Love, J. B. Uranyl complexation by a schiff-base, polypyrrolic macrocycle. Inorg. Chem. 43, 8206–8208 (2004).
Arnold, P. L. et al. Single-electron uranyl reduction by a rare-earth cation. Angew. Chem. Int. Ed. 50, 887–890 (2011).
Arnold, P. L., Patel, D., Blake, A. J., Wilson, C. & Love, J. B. Selective oxo functionalization of the uranyl ion with 3d metal cations. J. Am. Chem. Soc. 128, 9610–9611 (2006).
Arnold, P. L., Patel, D., Wilson, C. & Love, J. B. Reduction and selective oxo group silylation of the uranyl dication. Nature 451, 315–317 (2008).
Arnold, P. L. et al. Uranyl oxo activation and functionalisation by metal cation coordination. Nature Chem. 2, 1056–1061 (2010).
Arnold, P. L., Pecharman, A. F. & Love, J. B. Oxo-group protonation and silylation of pentavalent uranyl Pacman complexes. Angew. Chem. Int. Ed. 50, 9456–9458 (2011).
Brown, J. L., Wu, G. & Hayton, T. W. Oxo ligand silylation in a uranyl beta-ketoiminate complex. J. Am. Chem. Soc. 132, 7248–7249 (2010).
Berthet, J. C., Siffredi, G., Thuéry, P. & Ephritikhine, M. Controlled chemical reduction of uranyl salts into UX4(MeCN)4 (X= Cl, Br, I) with Me3SiX reagents. Eur. J. Inorg. Chem. 4017–4020 (2007).
Schreckenbach, G., Hay, P. J. & Martin, R. L. Theoretical study of stable trans and cis isomers in [UO2(OH)4]2− using relativistic density functional theory. Inorg. Chem. 37, 4442–4451 (1998).
Villiers, C., Thuéry, P. & Ephritikhine, M. The first cis-dioxido uranyl compound under scrutiny. Angew. Chem. Int. Ed. 47, 5892–5893 (2008).
Fortier, S. & Hayton, T. W. Oxo ligand functionalization in the uranyl ion ([UO2]2+). Coord. Chem. Rev. 254, 197–214 (2010).
Shamov, G. A. & Schreckenbach, G. Theoretical study of the oxygen exchange in uranyl hydroxide. An old riddle solved? J. Am. Chem. Soc. 130, 13735–13744 (2008).
Muller, K., Brendler, V. & Foerstendorf, H. Aqueous uranium(VI) hydrolysis species characterized by attenuated total reflection Fourier-transform infrared spectroscopy. Inorg. Chem. 47, 10127–10134 (2008).
Clark, D. L. et al. Chemical speciation of the uranyl ion under highly alkaline conditions. Synthesis, structures, and oxo ligand exchange dynamics. Inorg. Chem. 38, 1456–1466 (1999).
Watson, L. A. & Hay, B. P. Role of the uranyl oxo group as a hydrogen bond acceptor. Inorg. Chem. 50, 2599–2605 (2011).
Biswas, B., Mougel, V., Pecaut, J. & Mazzanti, M. Base-driven assembly of large uranium oxo/hydroxo clusters. Angew. Chem. Int. Ed. 50, 5744–5747 (2011).
Konze, W. V. et al. in Plutonium Futures—The Science Vol. 532, Conference Proceedings (eds Pillay, K. K. S. & Kim, K. C.) 261–262 (AIP, 2000).
Wilkerson, M. P. et al. Basicity of uranyl oxo ligands upon coordination of alkoxides. Inorg. Chem. 39, 5277–5285 (2000).
Bühl, M. & Schreckenbach, G. Oxygen exchange in uranyl hydroxide via two non-classical ions. Inorg. Chem. 49, 3821–3827 (2010).
Szabo, Z. & Grenthe, I. On the mechanism of oxygen exchange between uranyl(VI) oxygen and water in strongly alkaline solution as studied by 17O NMR magnetization transfer. Inorg. Chem. 49, 4928–4933 (2010).
Tsushima, S., Rossberg, A., Ikeda, A., Muller, K. & Scheinost, A. C. Stoichiometry and structure of uranyl(VI) hydroxo dimer and trimer complexes in aqueous solution. Inorg. Chem. 46, 10819–10826 (2007).
Hratchian, H. P. et al. Theoretical investigation of uranyl dihydroxide: oxo ligand exchange, water catalysis, and vibrational spectra. J. Phys. Chem. A 109, 8579–8586 (2005).
Anderson, T. M. et al. A late-transition metal oxo complex: K7Na9[O=PtIV(H2O)L2], L=[PW9O34]9 . Science 306, 2074–2077 (2004).
Pan, Q-J., Shamov, G. A. & Schreckenbach, G. Binuclear uranium(VI) complexes with a ‘Pacman’ expanded porphyrin: computational evidence for highly unusual bis-actinyl structures. Chem. Eur. J. 16, 2282–2290 (2010).
Pan, Q-J. & Schreckenbach, G. Binuclear hexa- and pentavalent uranium complexes with a polypyrrolic ligand: A density functional study of water- and hydronium-induced reactions. Inorg. Chem. 49, 6509–6517 (2010).
Cotton, F. A., Marler, D. O. & Schwotzer, W. Dinuclear uranium alkoxides. Preparation and structures of KU2(OCMe3)9, U2(OCMe3)9, and U2(OCHMe2)10, containing [uranium(IV), uranium(IV)], [uranium(IV), uranium(V)], and [uranium(V), uranium(V)], respectively. Inorg. Chem. 23, 4211–4215 (1984).
Le Borgne, T., Lance, M., Nierlich, M. & Ephritikhine, M. Synthesis and crystal structure of [U(η-C8H8)]2[μ−η4:η4-HN(CH2)3N(CH2)3N(CH2)3NH], a dinuclear compound with a bridging tetra-amide ligand. J. Organomet. Chem. 598, 313–317 (2000).
Korobkov, I., Gambarotta, S. & Yap, G. P. A. A highly reactive uranium complex supported by the calix[4]tetrapyrrole tetraanion affording dinitrogen cleavage, solvent deoxygenation, and polysilanol depolymerization. Angew. Chem. Int. Ed. 41, 3433–3436 (2002).
Lam, O. P., Heinemann, F. W. & Meyer, K. Activation of elemental S, Se and Te with uranium(III): bridging U–E–U (E=S, Se) and diamond-core complexes U–E2–U (E=O, S, Se, Te). Chem. Sci. 2, 1538–1547 (2011).
Dulebohn, J. I., Stamatakos, T. C., Ward, D. L. & Nocera, D. G. The preparation of dimolybdenum(V,V) complexes from molybdenum quadruply bonded metal–metal dimers. Polyhedron 10, 2813–2820 (1991).
Gagliardi, L. & Roos, B. O. Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond. Nature 433, 848–851 (2005).
Rinehart, J. D., Harris, T. D., Kozimor, S. A., Bartlett, B. M. & Long, J. R. Magnetic exchange coupling in actinide-containing molecules. Inorg. Chem. 48, 3382–3395 (2009).
Graves, C. R. et al. Organometallic uranium(V) imido halide complexes: from synthesis to electronic structure and bonding. J. Am. Chem. Soc. 130, 5272–5285 (2008).
Yahia, A., Arnold, P. L., Love, J. B. & Maron, L. A DFT study of the single electron reduction and silylation of the U–O bond of the uranyl dication in a macrocyclic environment. Chem. Commun. 2402–2404 (2009).
Yahia, A., Arnold, P. L., Love, J. B. & Maron, L. The effect of the equatorial environment on oxo-group silylation of the uranyl dication: a computational study. Chem. Eur. J. 16, 4881–4888 (2010).
Hayton, T. W. & Wu, G. Exploring the effects of reduction or Lewis acid coordination on the U=O bond of the uranyl moiety. Inorg. Chem. 48, 3065–3072 (2009).
Kuchle, W., Dolg, M., Stoll, H. & Preuss, H. Ab initio pseudopotentials for Hg through Rn .1. Parameter sets and atomic calculations. Mol. Phys. 74, 1245–1263 (1991).
Kuchle, W., Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted pseudopotentials for the actinides—parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 100, 7535–7542 (1994).
Gaussian 09, Revision A.2 (Gaussian, Inc., 2009).
Laikov, D. N. & Ustynyuk, Y. A. PRIRODA-04: A quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ. Chem. Bull. 54, 820–826 (2005).
Acknowledgements
P.L.A. and J.B.L. acknowledge support from the Engineering and Physical Sciences Research Council EPSRC (UK), EaStCHEM and the University of Edinburgh. G.S. acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).
Author information
Authors and Affiliations
Contributions
G.M.J. synthesized and characterized the compounds. P.L.A. and J.B.L. generated and managed the project, helped characterize the complexes, analysed the data and wrote the manuscript. G.S. and S.O.O. carried out and interpreted the computational analyses of bonding. N.M. performed the ligand-field and magnetic superexchange calculations.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 2828 kb)
Supplementary information
Crystallographic data for [UO2{N(SiMe2Ph)2}2(py)2] (CIF 14 kb)
Supplementary information
Crystallographic data for compound 2a (CIF 46 kb)
Supplementary information
Crystallographic data for compound 2b (CIF 45 kb)
Supplementary information
Crystallographic data for compound 4 (CIF 48 kb)
Rights and permissions
About this article
Cite this article
Arnold, P., Jones, G., Odoh, S. et al. Strongly coupled binuclear uranium–oxo complexes from uranyl oxo rearrangement and reductive silylation. Nature Chem 4, 221–227 (2012). https://doi.org/10.1038/nchem.1270
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.1270
This article is cited by
-
Creation of an unexpected plane of enhanced covalency in cerium(III) and berkelium(III) terpyridyl complexes
Nature Communications (2021)
-
Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds
Nature Chemistry (2019)
-
Molecular and electronic structure of terminal and alkali metal-capped uranium(V) nitride complexes
Nature Communications (2016)
-
Organometallic neptunium(III) complexes
Nature Chemistry (2016)
-
A computational investigation of polypyrrolic macrocyclic actinyl complexes: effects of explicit solvent coordination on structure, vibrational spectra and redox property
Theoretical Chemistry Accounts (2016)