Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strongly coupled binuclear uranium–oxo complexes from uranyl oxo rearrangement and reductive silylation

Abstract

The most common motif in uranium chemistry is the d0f0 uranyl ion [UO2]2+ in which the oxo groups are rigorously linear and inert. Alternative geometries, such as the cis-uranyl, have been identified theoretically and implicated in oxo-atom transfer reactions that are relevant to environmental speciation and nuclear waste remediation. Single electron reduction is now known to impart greater oxo-group reactivity, but with retention of the linear OUO motif, and reactions of the oxo groups to form new covalent bonds remain rare. Here, we describe the synthesis, structure, reactivity and magnetic properties of a binuclear uranium–oxo complex. Formed through a combination of reduction and oxo-silylation and migration from a trans to a cis position, the new butterfly-shaped Si–OUO2UO–Si molecule shows remarkably strong UV–UV coupling and chemical inertness, suggesting that this rearranged uranium oxo motif might exist for other actinide species in the environment, and have relevance to the aggregation of actinide oxide clusters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The new butterfly-shaped binuclear UV complexes are formed from the addition of excess uranyl amide salts to the wedge-shaped uranyl macrocyclic complex as a result of oxo-silylation and oxo-migration from a trans to a cis position.
Figure 2: Solid-state structure of the binuclear silylated uranium oxo complex [(Me3SiOUO)2(L)] 2a.
Figure 3: Molecular orbitals of primary σ and π character in the unrestricted singlet state of 2a.
Figure 4: Solid-state magnetic behaviour of 2a between 2 and 300 K.
Figure 5: Reactions between uranyl silylamides and H4L to afford butterfly-uranyl complexes 2 and 3 and probable structures of the constituent parts of 3.

Similar content being viewed by others

References

  1. Denning, R. G. Electronic structure and bonding in actinyl ions and their analogs. J. Phys. Chem. A 111, 4125–4143 (2007).

    Article  CAS  Google Scholar 

  2. Arnold, P. L., Love, J. B. & Patel, D. Pentavalent uranyl complexes. Coord. Chem. Rev. 253, 1973–1978 (2009).

    Article  CAS  Google Scholar 

  3. Schettini, M. F., Wu, G. & Hayton, T. W. Coordination of N-donor ligands to a uranyl(V) beta-diketiminate complex. Inorg. Chem. 48, 11799–11808 (2009).

    Article  CAS  Google Scholar 

  4. Berthet, J-C., Siffredi, G., Thuéry, P. & Ephritikhine, M. Easy access to stable pentavalent uranyl complexes. Chem. Commun. 3184–3185 (2006).

  5. Nocton, G. et al. Synthesis, structure, and bonding of stable complexes of pentavalent uranyl. J. Am. Chem. Soc. 132, 495–508 (2010).

    Article  CAS  Google Scholar 

  6. Steele, H. & Taylor, R. J. A theoretical study of the inner-sphere disproportionation reaction mechanism of the pentavalent actinyl ions. Inorg. Chem. 46, 6311–6318 (2007).

    Article  CAS  Google Scholar 

  7. Suzuki, Y., Kelly, S. D., Kemner, K. M. & Banfield, J. F. Radionuclide contamination: nanometre-size products of uranium bioreduction. Nature 419, 134 (2002).

    Article  CAS  Google Scholar 

  8. Ikeda, A. et al. Comparative study of uranyl(VI) and -(V) carbonato complexes in an aqueous solution. Inorg. Chem. 46, 4212–4219 (2007).

    Article  CAS  Google Scholar 

  9. Burdet, F., Pecaut, J. & Mazzanti, M. Isolation of a tetrameric cation–cation complex of pentavalent uranyl. J. Am. Chem. Soc. 128, 16512–16513 (2006).

    Article  CAS  Google Scholar 

  10. Nocton, G., Horeglad, P., Pecaut, J. & Mazzanti, M. Polynuclear cation–cation complexes of pentavalent uranyl: relating stability and magnetic properties to structure. J. Am. Chem. Soc. 130, 16633–16645 (2008).

    Article  CAS  Google Scholar 

  11. Arnold, P. L., Blake, A. J., Wilson, C. & Love, J. B. Uranyl complexation by a schiff-base, polypyrrolic macrocycle. Inorg. Chem. 43, 8206–8208 (2004).

    Article  CAS  Google Scholar 

  12. Arnold, P. L. et al. Single-electron uranyl reduction by a rare-earth cation. Angew. Chem. Int. Ed. 50, 887–890 (2011).

    Article  CAS  Google Scholar 

  13. Arnold, P. L., Patel, D., Blake, A. J., Wilson, C. & Love, J. B. Selective oxo functionalization of the uranyl ion with 3d metal cations. J. Am. Chem. Soc. 128, 9610–9611 (2006).

    Article  CAS  Google Scholar 

  14. Arnold, P. L., Patel, D., Wilson, C. & Love, J. B. Reduction and selective oxo group silylation of the uranyl dication. Nature 451, 315–317 (2008).

    Article  CAS  Google Scholar 

  15. Arnold, P. L. et al. Uranyl oxo activation and functionalisation by metal cation coordination. Nature Chem. 2, 1056–1061 (2010).

    Article  CAS  Google Scholar 

  16. Arnold, P. L., Pecharman, A. F. & Love, J. B. Oxo-group protonation and silylation of pentavalent uranyl Pacman complexes. Angew. Chem. Int. Ed. 50, 9456–9458 (2011).

    Article  CAS  Google Scholar 

  17. Brown, J. L., Wu, G. & Hayton, T. W. Oxo ligand silylation in a uranyl beta-ketoiminate complex. J. Am. Chem. Soc. 132, 7248–7249 (2010).

    Article  CAS  Google Scholar 

  18. Berthet, J. C., Siffredi, G., Thuéry, P. & Ephritikhine, M. Controlled chemical reduction of uranyl salts into UX4(MeCN)4 (X= Cl, Br, I) with Me3SiX reagents. Eur. J. Inorg. Chem. 4017–4020 (2007).

  19. Schreckenbach, G., Hay, P. J. & Martin, R. L. Theoretical study of stable trans and cis isomers in [UO2(OH)4]2− using relativistic density functional theory. Inorg. Chem. 37, 4442–4451 (1998).

    Article  CAS  Google Scholar 

  20. Villiers, C., Thuéry, P. & Ephritikhine, M. The first cis-dioxido uranyl compound under scrutiny. Angew. Chem. Int. Ed. 47, 5892–5893 (2008).

    Article  CAS  Google Scholar 

  21. Fortier, S. & Hayton, T. W. Oxo ligand functionalization in the uranyl ion ([UO2]2+). Coord. Chem. Rev. 254, 197–214 (2010).

    Article  CAS  Google Scholar 

  22. Shamov, G. A. & Schreckenbach, G. Theoretical study of the oxygen exchange in uranyl hydroxide. An old riddle solved? J. Am. Chem. Soc. 130, 13735–13744 (2008).

    Article  CAS  Google Scholar 

  23. Muller, K., Brendler, V. & Foerstendorf, H. Aqueous uranium(VI) hydrolysis species characterized by attenuated total reflection Fourier-transform infrared spectroscopy. Inorg. Chem. 47, 10127–10134 (2008).

    Article  Google Scholar 

  24. Clark, D. L. et al. Chemical speciation of the uranyl ion under highly alkaline conditions. Synthesis, structures, and oxo ligand exchange dynamics. Inorg. Chem. 38, 1456–1466 (1999).

    Article  CAS  Google Scholar 

  25. Watson, L. A. & Hay, B. P. Role of the uranyl oxo group as a hydrogen bond acceptor. Inorg. Chem. 50, 2599–2605 (2011).

    Article  CAS  Google Scholar 

  26. Biswas, B., Mougel, V., Pecaut, J. & Mazzanti, M. Base-driven assembly of large uranium oxo/hydroxo clusters. Angew. Chem. Int. Ed. 50, 5744–5747 (2011).

    Google Scholar 

  27. Konze, W. V. et al. in Plutonium Futures—The Science Vol. 532, Conference Proceedings (eds Pillay, K. K. S. & Kim, K. C.) 261–262 (AIP, 2000).

  28. Wilkerson, M. P. et al. Basicity of uranyl oxo ligands upon coordination of alkoxides. Inorg. Chem. 39, 5277–5285 (2000).

    Article  CAS  Google Scholar 

  29. Bühl, M. & Schreckenbach, G. Oxygen exchange in uranyl hydroxide via two non-classical ions. Inorg. Chem. 49, 3821–3827 (2010).

    Article  Google Scholar 

  30. Szabo, Z. & Grenthe, I. On the mechanism of oxygen exchange between uranyl(VI) oxygen and water in strongly alkaline solution as studied by 17O NMR magnetization transfer. Inorg. Chem. 49, 4928–4933 (2010).

    Article  CAS  Google Scholar 

  31. Tsushima, S., Rossberg, A., Ikeda, A., Muller, K. & Scheinost, A. C. Stoichiometry and structure of uranyl(VI) hydroxo dimer and trimer complexes in aqueous solution. Inorg. Chem. 46, 10819–10826 (2007).

    Article  CAS  Google Scholar 

  32. Hratchian, H. P. et al. Theoretical investigation of uranyl dihydroxide: oxo ligand exchange, water catalysis, and vibrational spectra. J. Phys. Chem. A 109, 8579–8586 (2005).

    Article  CAS  Google Scholar 

  33. Anderson, T. M. et al. A late-transition metal oxo complex: K7Na9[O=PtIV(H2O)L2], L=[PW9O34]9 . Science 306, 2074–2077 (2004).

    Article  CAS  Google Scholar 

  34. Pan, Q-J., Shamov, G. A. & Schreckenbach, G. Binuclear uranium(VI) complexes with a ‘Pacman’ expanded porphyrin: computational evidence for highly unusual bis-actinyl structures. Chem. Eur. J. 16, 2282–2290 (2010).

    Article  CAS  Google Scholar 

  35. Pan, Q-J. & Schreckenbach, G. Binuclear hexa- and pentavalent uranium complexes with a polypyrrolic ligand: A density functional study of water- and hydronium-induced reactions. Inorg. Chem. 49, 6509–6517 (2010).

    Article  CAS  Google Scholar 

  36. Cotton, F. A., Marler, D. O. & Schwotzer, W. Dinuclear uranium alkoxides. Preparation and structures of KU2(OCMe3)9, U2(OCMe3)9, and U2(OCHMe2)10, containing [uranium(IV), uranium(IV)], [uranium(IV), uranium(V)], and [uranium(V), uranium(V)], respectively. Inorg. Chem. 23, 4211–4215 (1984).

    Article  CAS  Google Scholar 

  37. Le Borgne, T., Lance, M., Nierlich, M. & Ephritikhine, M. Synthesis and crystal structure of [U(η-C8H8)]2[μ−η44-HN(CH2)3N(CH2)3N(CH2)3NH], a dinuclear compound with a bridging tetra-amide ligand. J. Organomet. Chem. 598, 313–317 (2000).

    Article  CAS  Google Scholar 

  38. Korobkov, I., Gambarotta, S. & Yap, G. P. A. A highly reactive uranium complex supported by the calix[4]tetrapyrrole tetraanion affording dinitrogen cleavage, solvent deoxygenation, and polysilanol depolymerization. Angew. Chem. Int. Ed. 41, 3433–3436 (2002).

    Article  CAS  Google Scholar 

  39. Lam, O. P., Heinemann, F. W. & Meyer, K. Activation of elemental S, Se and Te with uranium(III): bridging U–E–U (E=S, Se) and diamond-core complexes U–E2–U (E=O, S, Se, Te). Chem. Sci. 2, 1538–1547 (2011).

    Article  CAS  Google Scholar 

  40. Dulebohn, J. I., Stamatakos, T. C., Ward, D. L. & Nocera, D. G. The preparation of dimolybdenum(V,V) complexes from molybdenum quadruply bonded metal–metal dimers. Polyhedron 10, 2813–2820 (1991).

    Article  CAS  Google Scholar 

  41. Gagliardi, L. & Roos, B. O. Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond. Nature 433, 848–851 (2005).

    Article  CAS  Google Scholar 

  42. Rinehart, J. D., Harris, T. D., Kozimor, S. A., Bartlett, B. M. & Long, J. R. Magnetic exchange coupling in actinide-containing molecules. Inorg. Chem. 48, 3382–3395 (2009).

    Article  CAS  Google Scholar 

  43. Graves, C. R. et al. Organometallic uranium(V) imido halide complexes: from synthesis to electronic structure and bonding. J. Am. Chem. Soc. 130, 5272–5285 (2008).

    Article  CAS  Google Scholar 

  44. Yahia, A., Arnold, P. L., Love, J. B. & Maron, L. A DFT study of the single electron reduction and silylation of the U–O bond of the uranyl dication in a macrocyclic environment. Chem. Commun. 2402–2404 (2009).

  45. Yahia, A., Arnold, P. L., Love, J. B. & Maron, L. The effect of the equatorial environment on oxo-group silylation of the uranyl dication: a computational study. Chem. Eur. J. 16, 4881–4888 (2010).

    Article  CAS  Google Scholar 

  46. Hayton, T. W. & Wu, G. Exploring the effects of reduction or Lewis acid coordination on the U=O bond of the uranyl moiety. Inorg. Chem. 48, 3065–3072 (2009).

    Article  CAS  Google Scholar 

  47. Kuchle, W., Dolg, M., Stoll, H. & Preuss, H. Ab initio pseudopotentials for Hg through Rn .1. Parameter sets and atomic calculations. Mol. Phys. 74, 1245–1263 (1991).

    Article  Google Scholar 

  48. Kuchle, W., Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted pseudopotentials for the actinides—parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 100, 7535–7542 (1994).

    Article  Google Scholar 

  49. Gaussian 09, Revision A.2 (Gaussian, Inc., 2009).

  50. Laikov, D. N. & Ustynyuk, Y. A. PRIRODA-04: A quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ. Chem. Bull. 54, 820–826 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.L.A. and J.B.L. acknowledge support from the Engineering and Physical Sciences Research Council EPSRC (UK), EaStCHEM and the University of Edinburgh. G.S. acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Contributions

G.M.J. synthesized and characterized the compounds. P.L.A. and J.B.L. generated and managed the project, helped characterize the complexes, analysed the data and wrote the manuscript. G.S. and S.O.O. carried out and interpreted the computational analyses of bonding. N.M. performed the ligand-field and magnetic superexchange calculations.

Corresponding authors

Correspondence to Polly L. Arnold or Jason B. Love.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2828 kb)

Supplementary information

Crystallographic data for [UO2{N(SiMe2Ph)2}2(py)2] (CIF 14 kb)

Supplementary information

Crystallographic data for compound 2a (CIF 46 kb)

Supplementary information

Crystallographic data for compound 2b (CIF 45 kb)

Supplementary information

Crystallographic data for compound 4 (CIF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, P., Jones, G., Odoh, S. et al. Strongly coupled binuclear uranium–oxo complexes from uranyl oxo rearrangement and reductive silylation. Nature Chem 4, 221–227 (2012). https://doi.org/10.1038/nchem.1270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1270

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing