Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling on-surface polymerization by hierarchical and substrate-directed growth


A key challenge in the field of nanotechnology, in particular in the design of molecular machines, novel materials or molecular electronics, is the bottom-up construction of covalently bound molecular architectures in a well-defined arrangement. To date, only rather simple structures have been obtained because of the limitation of one-step connection processes. Indeed, for the formation of sophisticated structures, step-by-step connection of molecules is required. Here, we present a strategy for the covalent connection of molecules in a hierarchical manner by the selective and sequential activation of specific sites, thereby generating species with a programmed reactivity. This approach leads to improved network quality and enables the fabrication of heterogeneous architectures with high selectivity. Furthermore, substrate-directed growth and a preferred orientation of the molecular nanostructures are achieved on an anisotropic surface. The demonstrated control over reactivity and diffusion during covalent bond formation constitutes a promising route towards the creation of sophisticated multi-component molecular nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular building blocks with bromine and iodine substituents for sequential activation.
Figure 2: Hierarchical growth following sequential thermal activation.
Figure 3: Size distribution for non-hierarchical and hierarchical growth.
Figure 4: Heterogeneous structures by hierarchical growth.
Figure 5: Controlling covalent linking through substrate orientation.
Figure 6: Copolymerization and segregation on a Au(100) surface.

Similar content being viewed by others


  1. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotech. 1, 25–35 (2006).

    Article  CAS  Google Scholar 

  2. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    Article  CAS  Google Scholar 

  3. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  Google Scholar 

  4. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  CAS  Google Scholar 

  5. Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

    Article  CAS  Google Scholar 

  6. Heath, J. R. & Ratner, M. A. Molecular electronics. Phys. Today 56, 43–49 (2003).

    Article  CAS  Google Scholar 

  7. Bartels, L. Tailoring molecular layers at metal surfaces. Nature Chem. 2, 87–95 (2010).

    Article  CAS  Google Scholar 

  8. Rabe, J. P. & Buchholz, S. Commensurability and mobility in two-dimensional molecular patterns on graphite. Science 253, 424–427 (1991).

    Article  CAS  Google Scholar 

  9. Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y. & Mashiko, S. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 413, 619–621 (2001).

    Article  CAS  Google Scholar 

  10. Slater, A. G., Beton, P. H. & Champness, N. R. Two-dimensional supramolecular chemistry on surfaces. Chem. Sci. 2, 1440–1448 (2011).

    Article  CAS  Google Scholar 

  11. Lin, N., Stepanow, S., Ruben, M. & Barth, J. V. Surface-confined supramolecular coordination chemistry. Top. Curr. Chem. 287, 1–44 (2009).

    CAS  Google Scholar 

  12. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    Article  CAS  Google Scholar 

  13. Weigelt, S. et al. Covalent interlinking of an aldehyde and an amine on an Au(111) surface in ultrahigh vacuum. Angew. Chem. Int. Ed. 46, 9227–9230 (2007).

    Article  CAS  Google Scholar 

  14. Champness, N. R. Surface chemistry: building with molecules. Nature Nanotech. 2, 671–672 (2007).

    Article  CAS  Google Scholar 

  15. Matena, M., Riehm, T., Stöhr, M., Jung, T. A. & Gade, L. H. Transforming surface coordination polymers into covalent surface polymers: linked polycondensed aromatics through oligomerization of N-heterocyclic carbene intermediates. Angew. Chem. Int. Ed. 47, 2414–2417 (2008).

    Article  CAS  Google Scholar 

  16. Veld, M. I., Iavicoli, P., Haq, S., Amabilino, D. B. & Raval, R. Unique intermolecular reaction of simple porphyrins at a metal surface gives covalent nanostructures. Chem. Commun. 1536–1538 (2008).

  17. Zwaneveld, N. A. A. et al. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 130, 6678–6679 (2008).

    Article  CAS  Google Scholar 

  18. Gourdon, A. On-surface covalent coupling in ultrahigh vacuum. Angew. Chem. Int. Ed. 47, 6950–6953 (2008).

    Article  CAS  Google Scholar 

  19. Gutzler, R. et al. Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). Chem. Commun. 4456–4458 (2009).

  20. Perepichka, D. F. & Rosei, F. Extending polymer conjugation into the second dimension. Science 323, 216–217 (2009).

    Article  CAS  Google Scholar 

  21. Sakamoto, J., Heijst, J. v., Lukin, O. & Schlüter, A. D. Two-dimensional polymers: Just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–1069 (2009).

    Article  CAS  Google Scholar 

  22. Sakaguchi, H., Matsumura, H. & Gong, H. Electrochemical epitaxial polymerization of single-molecular wires. Nature Mater. 3, 551–557 (2004).

    Article  CAS  Google Scholar 

  23. Sakaguchi, H., Matsumura, H., Gong, H. & Abouelwafa, A. M. Direct visualization of the formation of single-molecule conjugated copolymers. Science 310, 1002–1006 (2005).

    Article  CAS  Google Scholar 

  24. Hla, S-W., Bartels, L., Meyer, G. & Rieder, K-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

    Article  CAS  Google Scholar 

  25. Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    Article  CAS  Google Scholar 

  26. Bombis, C. et al. Single molecular wires connecting metallic and insulating surface areas. Angew. Chem. Int. Ed. 48, 9966–9970 (2009).

    Article  CAS  Google Scholar 

  27. Lipton-Duffin, J. A., Ivasenko, O., Perepichka, D. F. & Rosei, F. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5, 592–597 (2009).

    Article  CAS  Google Scholar 

  28. Bieri, M. et al. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 6919–6921 (2009).

  29. Lipton-Duffin, J. A. et al. Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction. Proc. Natl Acad. Sci.USA 107, 11200–11204 (2010).

    Article  CAS  Google Scholar 

  30. Weigelt, S. et al. Surface synthesis of 2D branched polymer nanostructures. Angew. Chem. Int. Ed. 47, 4406–4410 (2008).

    Article  CAS  Google Scholar 

  31. Treier, M., Richardson, N. V. & Fasel, R. Fabrication of surface-supported low-dimensional polyimide networks. J. Am. Chem. Soc. 130, 14054–14055 (2008).

    Article  CAS  Google Scholar 

  32. Treier, M., Fasel, R., Champness, N. R., Argent, S. & Richardson, N. V. Molecular imaging of polyimide formation. Phys. Chem. Chem. Phys. 11, 1209–1214 (2009).

    Article  CAS  Google Scholar 

  33. Boz, S., Stöhr, M., Soydaner, U. & Mayor, M. Protecting-group-controlled surface chemistry—organization and heat-induced coupling of 4,4-di(tert-butoxycarbonylamino)biphenyl on metal surfaces. Angew. Chem. Int. Ed. 48, 3179–3183 (2009).

    Article  CAS  Google Scholar 

  34. Abel, M., Clair, S., Ourdjini, O., Mossoyan, M. & Porte, L. Single layer of polymeric Fe-phthalocyanine: an organometallic sheet on metal and thin insulating film. J. Am. Chem. Soc. 133, 1203–1205 (2011).

    Article  CAS  Google Scholar 

  35. Lide, D. R. (ed.) CRC Handbook of Chemistry and Physics 90th edn (CRC Press, 2010).

    Google Scholar 

  36. Villagomez, C. J., Sasaki, T., Tour, J. M. & Grill, L. Bottom-up assembly of molecular wagons on a surface. J. Am. Chem. Soc. 132, 16848–16854 (2010).

    Article  CAS  Google Scholar 

  37. Kanuru, V. K. et al. Sonogashira coupling on an extended gold surface in vacuo: Reaction of phenylacetylene with iodobenzene on Au(111). J. Am. Chem. Soc. 132, 8081–8086 (2010).

    Article  CAS  Google Scholar 

  38. Bieri, M. et al. Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010).

    Article  CAS  Google Scholar 

  39. Schunack, M. et al. Long jumps in the surface diffusion of large molecules. Phys. Rev. Lett. 88, 156102 (2002).

    Article  CAS  Google Scholar 

  40. Havu, P., Blum, V., Havu, V., Rinke, P. & Scheffler, M. Large-scale surface reconstruction energetics of Pt(100) and Au(100) by all-electron density functional theory. Phys. Rev. B 82, 161418 (2010).

    Article  Google Scholar 

Download references


This work was funded by the Deutsche Forschungsgemeinschaft (DFG) through SFB 658 and European Projects ARTIST and AtMol. Funding from Fondo Trieste, MIUR (PRIN2008), CNR (NOMCIS) and the EU (NFFA) is gratefully acknowledged by the Trieste group.

Author information

Authors and Affiliations



S.H. and L.G. conceived the experiments. V.E. and S.H. synthesized the molecules. L.L., C.D., C.A., G.C., F.E. and L.G. performed the experiments. L.L., C.D. and L.G. analysed the data and L.G. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to S. Hecht or L. Grill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafferentz, L., Eberhardt, V., Dri, C. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nature Chem 4, 215–220 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing