Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Redox-induced reversible metal assembly through translocation and reversible ligand coupling in tetranuclear metal sandwich frameworks

An Erratum to this article was published on 15 December 2011

This article has been updated

Abstract

Sandwich structures formed by metal atoms intercalated between sp2-carbon planes can be found either in metal–graphite-based materials or discrete multinuclear sandwich complexes. Their reactivity, and in particular their dynamic behaviour, has recently attracted interest both from a structural and a practical aspect, for example in catalysis. However, progress in this area has been rather slow, and it remains difficult to elucidate their structure and behaviour at the molecular level. Here, we report two sandwich complexes—in which four palladium centres are incorporated between two π-conjugated ligands—which exhibit two modes of redox-switchable structural changes. In the first complex, the tetrapalladium chain is split by oxidation into two well-separated dipalladium units. This motion is reversed on reduction. In the second complex, reversible carbon–carbon coupling occurs between the ligands during the redox process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic behaviour of metal atoms or ions on a multidentate ligand.
Figure 2: Redox-induced dynamic behaviour of tetranuclear metal sandwich complexes.
Figure 3: Redox-induced reversible metal assembly in a tetranuclear metal sandwich framework.
Figure 4: Cyclic voltammograms of the tetranuclear Pd compounds involved in a redox-induced reversible metal assembly through translocation.
Figure 5: Redox-induced reversible C–C coupling of ligands in a tetranuclear metal sandwich framework.

Similar content being viewed by others

Change history

  • 21 November 2011

    In the version of this Article originally published online, an extraneous Pd atom appeared in Fig. 3. This has now been corrected in all versions of the Article.

References

  1. Enoki, T., Suzuki, M. & Endo, M. Graphite Intercalation Compounds and Applications (Oxford Univ. Press, 2003).

  2. Murahashi, T., Mochizuki, E., Kai, Y. & Kurosawa, H. Organometallic sandwich chains made of conjugated polyenes and metal–metal chains. J. Am. Chem. Soc. 121, 10660–10661 (1999).

    Article  CAS  Google Scholar 

  3. Murahashi, T., Uemura, T. & Kurosawa, H. Perylene–tetrapalladium sandwich complexes. J. Am. Chem. Soc. 125, 8436–8437 (2003).

    Article  CAS  Google Scholar 

  4. Tatsumi, Y., Nagai, T., Nakashima, H., Murahashi, T. & Kurosawa, H. Stepwise growth of polypalladium chains in 1,4-diphenyl-1,3-butadiene sandwich complexes. Chem. Commun. 1430–1431 (2004).

  5. Tatsumi, Y., Shirato, K., Murahashi, T., Ogoshi, S. & Kurosawa, H. Sandwich complexes containing bent palladium chains. Angew. Chem. Int. Ed. 45, 5799–5803 (2006).

    Article  CAS  Google Scholar 

  6. Tatsumi, Y., Murahashi, T., Okada, M., Ogoshi, S. & Kurosawa, H. A stable zerovalent palladium chain enveloped by a π-electron sheath of conjugated polyene ligands. Chem. Commun. 477–479 (2008).

  7. Murahashi, T. et al. Discrete sandwich compounds of monolayer palladium sheets. Science 313, 1104–1107 (2006).

    Article  CAS  Google Scholar 

  8. Murahashi, T., Kato, N., Uemura, T. & Kurosawa, H. Rearrangement of a Pd4 Skeleton from a 1D chain to a 2D sheet on the face of a perylene or fluoranthene ligand caused by exchange of the binder molecule. Angew. Chem. Int. Ed. 46, 3509–3512 (2007).

    Article  CAS  Google Scholar 

  9. Murahashi, T., Inoue, R., Usui, K. & Ogoshi, S. Square tetrapalladium sheet sandwich complexes: cyclononatetraenyl as a versatile face-capping ligand. J. Am. Chem. Soc. 131, 9888–9889 (2009).

    Article  CAS  Google Scholar 

  10. Murahashi, T., Usui, K., Inoue, R., Ogoshi, S. & Kurosawa, H. Metallocenoids of platinum: syntheses and structures of triangular triplatinum sandwich complexes of cycloheptatrienyl. Chem. Sci. 2, 117–122 (2011).

    Article  CAS  Google Scholar 

  11. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals (John Wiley & Sons, 2009).

  12. Elschenbroich, C. Organometallics (Wiley-VCH, 2006).

  13. Deubzer, B., Fritz, H. P., Kreiter, C. G. & Ofele, K. Spektroskopische Untersuchungen an metallorganischen Verbindungen XLV, 1H-NMR-Spektren von naphthalin-chrom(0)-tricarbonyl und seinen Derivaten. J. Organomet. Chem. 7, 289–299 (1967).

    Article  CAS  Google Scholar 

  14. Whitlock, H. W., Reich, C. & Woessner, W. D. Synthesis and interconversion of some shift isomeric polyene–tetrahaptoiron tricarbonyl complexes. J. Am. Chem. Soc. 93, 2483–2492 (1971).

    Article  CAS  Google Scholar 

  15. Albright, T. A., Hofmann, P., Hoffmann, R., Lillya, C. P. & Dobosh, P. A. Haptotropic rearrangements of polyene–MLn complexes. 2. Bicyclic polyene–MCp, –M(CO)3 systems. J. Am. Chem. Soc. 105, 3396–2411 (1983).

    Article  CAS  Google Scholar 

  16. Dötz, K. H. & Jahr, H. C. Tunable haptotropic metal migration in fused arenes: towards organometallic switches. Chem. Rec. 4, 61–71 (2004).

    Article  Google Scholar 

  17. Niibayashi, S., Matsubara, K., Haga, M. & Nagashima, H. Thermally reversible photochemical haptotropic rearrangement of diiron carbonyl complexes bearing a bridging acenaphthylene or aceanthrylene ligand. Organometallics 23, 635–646 (2004).

    Article  CAS  Google Scholar 

  18. Shaw-Taberlet, J. A., Sinbandhit, S., Soisnel, T., Hamon, J-R. & Lapinte, C. Stereoelectronic effects of the arenophile (η5-Cp*)Ru+ in electron-rich σ-arylacetylide iron complexes including redox-driven haptotropic rearrangement: an approach toward readable binary molecular memory components. Organometallics 25, 5311–5325 (2006).

    Article  CAS  Google Scholar 

  19. Barlow, S. & O'Hare, D. Metal–metal interactions in linked metallocenes. Chem. Rev. 97, 637–669 (1997).

    Article  CAS  Google Scholar 

  20. Le Vanda, C. et al. Bis(fulvalene)diiron, its mono- and dications. Intramolecular exchange interactions in a rigid system. J. Am. Chem. Soc. 98, 3181–3187 (1976).

    Article  CAS  Google Scholar 

  21. Ashley, A. E., Cooper, R. T., Wildgoose, G. G., Green, J. C. & O'Hare, D. Homoleptic permethylpentalene complexes: ‘double metallocenes’ of the first-row transition metals. J. Am. Chem. Soc. 130, 15662–15677 (2008).

    Article  CAS  Google Scholar 

  22. Liu, I-P-C., Wang, W-Z. & Peng, S-M. New generation of metal string complexes: strengthening metal–metal interaction via naphthyridyl group modulated oligo-α-pyridylamido ligands. Chem. Commun. 4323–4331 (2009).

  23. Rüffer, T. et al. Unique oxidative metal–metal bond formation of linearly aligned tetranuclear Rh−Mo−Mo−Rh Cluster. J. Am. Chem. Soc. 126, 12244–12245 (2004).

    Article  Google Scholar 

  24. Berry, J. F., Cotton, F. A., Lei, P., Lu, T. & Murillo, C. A. Additional steps toward molecular scale wires: further study of Ni510/11+ chains embraced by polypyridiylamide ligands. Inorg. Chem. 42, 3534–3539 (2003).

    Article  CAS  Google Scholar 

  25. Freeman, M. J., Orpen, A., Connelly, N. G., Manners, I. & Raven, S. J. Stereochemical consequences of the two-electron oxidation of a dirhodium fulvalene complex: the X-ray crystal structures of trans-[Rh2(CO)2(PPh3)2(η5:η′5-C10H8)] and cis-[Rh2(CO)2(PPh3)2(η5:η′5-C10H8)][PF6]2 . J. Chem. Soc. Dalton Trans. 2283–2289 (1985).

  26. Schriver, D. F., Kaesz, H. D. & Adams, R. D. The Chemistry of Metal Cluster Complexes (VCH, 1990).

  27. Astruc, D. Electron Transfer and Radical Processes in Transition-Metal Chemistry (VCH, 1995).

  28. Geiger, W. E. Organometallic electrochemistry: origins, development, and future. Organometallics 26, 5738–5765 (2007).

    Article  CAS  Google Scholar 

  29. Champin, B., Mobian, P. & Sauvage, J-P. Transition metal complexes as molecular machine prototypes. Chem. Soc. Rev. 36, 358–366 (2007).

    Article  CAS  Google Scholar 

  30. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  31. Zelikovich, L., Libman, J. & Shanzer, A. Molecular redox switches based on chemical triggering of iron translocation in triple-stranded helical complexes. Nature 374, 790–792 (1995).

    Article  CAS  Google Scholar 

  32. Collin, J-P., Cavina, P. & Sauvage, J-P. Electrochemically induced molecular motions in copper-complexed threaded systems: from the unstopped compound to the semi-rotaxane and the fully blocked rotaxane. New J. Chem. 21, 525–528 (1997).

    CAS  Google Scholar 

  33. Amendola, V., Fabbrizzi, L., Mangano, C. & Pallavicini, P. Molecular machines based on metal ion translocation. Acc. Chem. Res. 34, 488–493 (2001).

    Article  CAS  Google Scholar 

  34. Colasson, B., Le Poul, N., Le Mest, Y. & Reinaud, O. Electrochemically triggered double translocation of two different metal ions with a ditopic calix[6]arene ligand. J. Am. Chem. Soc. 132, 4393–4398 (2010).

    Article  CAS  Google Scholar 

  35. Bissell, R. A., Cordova, E., Kaifeer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    Article  CAS  Google Scholar 

  36. Murahashi, T. et al. Stereoretentive elimination and trans-olefination of the dicationic dipalladium moiety [Pd2Ln]2+ bound on 1,3,5-trienes. J. Am. Chem. Soc. 128, 4377–4388 (2006).

    Article  CAS  Google Scholar 

  37. Aguirre-Etcheverry, P. & O'Hare, D. Electronic communication through unsaturated hydrocarbon bridges in homobimetallic organometallic complexes. Chem. Rev. 110, 4839–4864 (2010).

    Article  CAS  Google Scholar 

  38. Ceccon, A., Santi, S., Orian, L. & Bisello, A. Electronic communication in heterobinuclear organometallic complexes through unsaturated hydrocarbon bridges. Coord. Chem. Rev. 248, 683–724 (2004).

    Article  CAS  Google Scholar 

  39. Murahashi, T., Nagai, T., Okuno, T., Matsutani, T. & Kurosawa, H. Synthesis and ligand substitution reactions of a homoleptic acetonitrile dipalladium(I) complex. Chem. Commun. 1689–1690 (2000).

  40. Wong, C. L. & Kochi, J. K. Electron transfer with organometals. Steric effects as probes for outer-sphere and inner-sphere oxidations of homoleptic alkylmetals with iron(III) and iridate(IV) complexes. J. Am. Chem. Soc. 101, 5593–5603 (1979).

    Article  CAS  Google Scholar 

  41. Rienäcker, R. & Yoshiura, H. Bis(pentadienyl)dinickel. Angew. Chem. Int. Ed. 8, 677–678 (1969).

    Article  Google Scholar 

  42. Navarre, D., Parlier, A., Rudler, H. & Daran, J. C. Double acetylene insertion into a μ-methylene complex of iron: formation of a μ-(divinyl)carbene complex of iron after double hydrogen migration. J. Organomet. Chem. 322, 103–109 (1987).

    Article  CAS  Google Scholar 

  43. Adams, R. D., Babin, J. E., Tasi, M. & Wolte, T. A. Pentadienyl ligands in cluster complexes. Synthesis and structural characterization of Ru5(CO)12(μ4-S)(μ-H)(μ-1,5-Me2C5H5) and Ru6(CO)15(μ4-S)(μ-H)(μ-1,5-Me2C5H5). J. Am. Chem. Soc. 110, 7093–7097 (1988).

    Article  CAS  Google Scholar 

  44. Wilke, G. Cyclooligomerization of butadiene and transition metal π-complexes. Angew. Chem. Int. Ed. 2, 105–115 (1963).

    Article  Google Scholar 

  45. Piarulli, U., Solari, E., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. Redox chemistry associated with the complexation of vanadium(V) and tungsten(VI) by meso-octaethylporphyrinogen: formation and cleavage of cyclopropane units functioning as shuttles of two electrons. J. Am. Chem. Soc. 118, 3634–3642 (1996).

    Article  CAS  Google Scholar 

  46. Rathore, R., Le Magueres, P., Lindeman, S. V. & Kochi, J. K. A redox-controlled molecular switch based on the reversible C−C bond formation in octamethoxytetraphenylene. Angew. Chem. Int. Ed. 39, 809–812 (2000).

    Article  CAS  Google Scholar 

  47. Bachmann, J. & Nocera, D. G. Multielectron chemistry of zinc porphyrinogen: a ligand-based platform for two-electron mixed valency. J. Am. Chem. Soc. 126, 2829–2837 (2004).

    Article  CAS  Google Scholar 

  48. Geiger, W. E. et al. Structural consequences of electron-transfer reactions. Part 22. Electrochemically induced insertion of ruthenium atoms into a C−C bond: reversible slicing of a cyclooctatetraene ligand. J. Am. Chem. Soc. 112, 7113–7121 (1990).

    Article  CAS  Google Scholar 

  49. Gallo, E. et al. Carbon–carbon bonds functioning as electron shuttles: the generation of electron-rich manganese(II)–Shiff base complexes and their redox chemistry. J. Am. Chem. Soc. 119, 5144–5154 (1997).

    Article  CAS  Google Scholar 

  50. Okazaki, M., Ohtani, T. & Ogino, H. Reversible cleavage and recombination of an acetylenic carbon−carbon bond on a tetrairon cluster coupled with a two-electron redox reaction. J. Am. Chem. Soc. 126, 4104–4105 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by PRESTO, the Japan Science and Technology Agency (JST), the Ministry of Education, Science, Sports and Technology, Japan, and The Sumitomo Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The idea and plans for this research were developed by T.M. Experiments were performed by T.M., K.S., A.F., K.T. and T.S. The data were analysed by T.M., K.S., A.F., K.T. and T.S. The manuscript was written by T.M. All authors discussed the results.

Corresponding author

Correspondence to Tetsuro Murahashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1378 kb)

Supplementary information

Crystallographic data for compound 1'-OMe (CIF 71 kb)

Supplementary information

Crystallographic data for compound 2-OMe.4CH2Cl2 (CIF 51 kb)

Supplementary information

Crystallographic data for compound 5.3CH3NO2 (CIF 70 kb)

Supplementary information

Crystallographic data for compound 6.2CH3NO2 (CIF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murahashi, T., Shirato, K., Fukushima, A. et al. Redox-induced reversible metal assembly through translocation and reversible ligand coupling in tetranuclear metal sandwich frameworks. Nature Chem 4, 52–58 (2012). https://doi.org/10.1038/nchem.1202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing