Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic multi-component covalent assembly for the reversible binding of secondary alcohols and chirality sensing

Abstract

Reversible covalent bonding is often used for the creation of novel supramolecular structures, multi-component assemblies and sensing ensembles. Despite the remarkable success of dynamic covalent systems, the reversible binding of a mono-alcohol with high strength is challenging. Here, we show that a strategy of carbonyl activation and hemiaminal ether stabilization can be embodied in a four-component reversible assembly that creates a tetradentate ligand and incorporates secondary alcohols with exceptionally high affinity. Evidence is presented that the intermediate leading to binding and exchange of alcohols is an iminium ion. To demonstrate the use of this assembly process we also explored chirality sensing and enantiomeric excess determinations. An induced twist in the ligand by a chiral mono-ol results in large Cotton effects in the circular dichroism spectra indicative of the handedness of the alcohol. The strategy revealed in this study should prove broadly applicable for the incorporation of alcohols into supramolecular architecture construction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed solution to the challenge of the binding of secondary alcohols.
Figure 2: Component exchange within the multi-component assembly.
Figure 3: Experimental evidence and proposed mechanism for multi-component assembly.
Figure 4: Exploration of four-component assembly for chirality sensing and e.e. determination.

Similar content being viewed by others

References

  1. Rowan, S. J. et al. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002).

    Article  Google Scholar 

  2. Corbett, P. T. et al. Dynamic combinatorial chemistry. Chem. Rev. 106, 3652–3711 (2006).

    Article  CAS  Google Scholar 

  3. Lehn, J-M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007).

    Article  CAS  Google Scholar 

  4. Hunt, R. A. R. & Otto, S. Dynamic combinatorial libraries: new opportunities in systems chemistry. Chem. Commun. 47, 847–858 (2011).

    Article  CAS  Google Scholar 

  5. Mastalerz, M. Shape-persistent organic cage compounds by dynamic covalent bond formation. Angew. Chem. Int. Ed. 49, 5042–5053 (2010).

    Article  CAS  Google Scholar 

  6. Mohr, G. J. Chromo- and fluororeactands: indicators for detection of neutral analytes by using reversible covalent-bond chemistry. Chem. Eur. J. 10, 1082–1090 (2004).

    Article  CAS  Google Scholar 

  7. Christinat, N., Scopelliti, R. & Severin K. Multicomponent assembly of boronic acid based macrocycles and cages. Angew. Chem. Int. Ed. 47, 1848–1852 (2008).

    Article  CAS  Google Scholar 

  8. Meyer, C. D., Joiner, C. S. & Stoddart, J. F. Template-directed synthesis employing reversible imine bond formation. Chem. Soc. Rev. 36, 1705–1723 (2007).

    Article  CAS  Google Scholar 

  9. Beeren, S. R. & Sanders, J. K. M. Discovery of linear receptors for multiple dihydrogen phosphate ions using dynamic combinatorial chemistry. J. Am. Chem. Soc. 133, 3804–3807 (2011).

    Article  CAS  Google Scholar 

  10. Osowska, K. & Miljanic, O. S. Oxidative kinetic self-sorting of a dynamic imine library. J. Am. Chem. Soc. 133, 724–727 (2011).

    Article  CAS  Google Scholar 

  11. Park, H. et al. Bioinspired chemical inversion of L-amino acids to D-amino acids. J. Am. Chem. Soc. 129, 1518–1519 (2007).

    Article  CAS  Google Scholar 

  12. Reinert, S. & Mohr, G. J. Chemosensor for the optical detection of aliphatic amines and diamines. Chem. Commun. 2272–2274 (2008).

  13. Mertz, E., Beil, J. B. & Zimmerman, S. C. Kinetics and thermodynamics of amine and diamine signaling by a trifluoroacetyl azobenzene reporter group. Org. Lett. 5, 3127–3130 (2003).

    Article  CAS  Google Scholar 

  14. Zhao, J., Fyles, T. M. & James, T. D. Chiral binol-bisboronic acid as fluorescent sensor for sugar acids. Angew. Chem. Int. Ed. 43, 3461–3464 (2004).

    Article  CAS  Google Scholar 

  15. Shabbir, S. H., Regan, C. J. & Anslyn, E. V. A general protocol for creating high-throughput screening assays for reaction yield and enantiomeric excess applied to hydrobenzoin. Proc. Natl Acad. Sci. USA 106, 10487–10492 (2009).

    Article  CAS  Google Scholar 

  16. You, L. & Anslyn, E. V. Secondary alcohol hemiacetal formation: an in situ carbonyl activation strategy. Org. Lett. 11, 5126–5129 (2009).

    Article  CAS  Google Scholar 

  17. Drahonovsky, D. & Lehn, J-M. Hemiacetals in dynamic covalent chemistry: formation, exchange, selection, and modulation processes. J. Org. Chem. 74, 8428–8432 (2009).

    Article  CAS  Google Scholar 

  18. Denmark, S. E. & Fu, J. Catalytic enantioselective addition of allylic organometallic reagents to aldehydes and ketones. Chem. Rev. 103, 2763–2794 (2003).

    Article  CAS  Google Scholar 

  19. Walsh, P. J. Titanium-catalyzed enantioselective additions of alkyl groups to aldehydes: mechanistic studies and new concepts in asymmetric catalysis. Acc. Chem. Res. 36, 739–749 (2003).

    Article  CAS  Google Scholar 

  20. Ikariya, T. & Blacker, A. J. Asymmetric transfer hydrogenation of ketones with bifunctional transition metal-based molecular catalysts. Acc. Chem. Res. 40, 1300–1308 (2007).

    Article  CAS  Google Scholar 

  21. Skucas, E., Ngai, M. Y., Komanduri, V. & Krische, M. J. Enantiomerically enriched allylic alcohols and allylic amines via C–C bond-forming hydrogenation: asymmetric carbonyl and imine vinylation. Acc. Chem. Res. 40, 1394–1401 (2007).

    Article  CAS  Google Scholar 

  22. Xu, S. & Giuseppone, N. Self-duplicating amplification in a dynamic combinatorial library. J. Am. Chem. Soc. 130, 1826–1827 (2008).

    Article  CAS  Google Scholar 

  23. Folmer-Andersen, J. F. & Lehn, J-M. Constitutional adaptation of dynamic polymers: hydrophobically driven sequence selection in dynamic covalent polyacylhydrazones. Angew. Chem. Int. Ed. 48, 7664–7667 (2009).

    Article  CAS  Google Scholar 

  24. Dirksen, A., Dirksen, S., Hackeng, T. M. & Dawson, P. E. Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. J. Am. Chem. Soc. 128, 15602–15603 (2006).

    Article  CAS  Google Scholar 

  25. Funderburk, L. H., Aldwin, L. & Jencks, W. P. Mechanisms of general acid and base catalysis of the reactions of water and alcohols with formaldehyde. J. Am. Chem. Soc. 100, 5444–5459 (1978).

    Article  CAS  Google Scholar 

  26. Fuchs, B., Nelson, A., Star, A., Stoddart, J. F. & Vidal, S. Amplification of dynamic chiral crown ether complexes during cyclic acetal formation. Angew. Chem. Int. Ed. 42, 4220–4224 (2003).

    Article  CAS  Google Scholar 

  27. Procuranti, B. & Connon, S. J. Unexpected catalysis: aprotic pyridinium ions as active and recyclable Bronsted acid catalysts in protic media. Org. Lett. 10, 4935–4938 (2008).

    Article  CAS  Google Scholar 

  28. Cacciapaglia, R., Stefano, S. D. & Mandolini, L. Metathesis reaction of formaldehyde acetals: an easy entry into the dynamic covalent chemistry of cyclophane formation. J. Am. Chem. Soc. 127, 13666–13671 (2005).

    Article  CAS  Google Scholar 

  29. Mohr, G. J. & Spichiger-Keller, U. E. Novel fluorescent sensor membranes for alcohols based on p-N,N-dioctylamino-4′-trifluoroacetylstilbene. Anal. Chim. Acta 351, 189–196 (1997).

    Article  CAS  Google Scholar 

  30. Matsui, M., Yamada, K. & Funabiki, K. Hemiacetal and hemiaminal formation at fluoroacyl moiety. Tetrahedron 61, 4671–4677 (2005).

    Article  CAS  Google Scholar 

  31. Sasaki, S., Kotegawa, Y. & Tamiaki, H. Trifluoroacetyl-chlorin as a new chemosensor for alcohol/amine detection. Tetrahedron Lett. 47, 4849–4852 (2006).

    Article  CAS  Google Scholar 

  32. Joyce, L. A., Shabbir, S. H. & Anslyn, E. V. The uses of supramolecular chemistry in synthetic methodology development: examples of anion and neutral molecular recognition. Chem. Soc. Rev. 39, 3621–3632 (2010).

    Article  CAS  Google Scholar 

  33. Dounay, A. B., Humphreys, P. G., Overman, L. E. & Wrobleski, A. D. Total synthesis of the strychnos alkaloid (+)-minfiensine: tandem enantioselective intramolecular Heck-iminium ion cyclization. J. Am. Chem. Soc. 130, 5368–5377 (2008).

    Article  CAS  Google Scholar 

  34. Jones, S. B., Simmons, B., Mastracchio, A. & MacMillan, D. W. C. Collective synthesis of natural products by means of organocascade catalysis. Nature 475, 183–188 (2011).

    Article  CAS  Google Scholar 

  35. Xu, H., Zuend, S. J., Woll, M. G., Tao, Y. & Jacobsen, E. N. Asymmetric cooperative catalysis of strong Bronsted acid-promoted reactions using chiral ureas. Science 327, 986–990 (2010).

    Article  CAS  Google Scholar 

  36. Li, G., Fronczek, F. R. & Antilla, J. C. Catalytic asymmetric addition of alcohols to imines: enantioselective preparation of chiral N,O-aminals. J. Am. Chem. Soc. 130, 12216–12217 (2008).

    Article  CAS  Google Scholar 

  37. Star, A., Goldberg, I. & Fuchs, B. Dioxadiazadecalin/salen tautomeric macrocycles and complexes: prototypal dynamic combinatorial virtual libraries. Angew. Chem. Int. Ed. 39, 2685–2689 (2000).

    Article  CAS  Google Scholar 

  38. Terada, M., Machioka, K. & Sorimachi, K. Activation of hemiaminal ethers by chiral Brønsted acids for facile access to enantioselective two-carbon homologation using enecarbamates. Angew. Chem. Int. Ed. 48, 2553–2556 (2009).

    Article  CAS  Google Scholar 

  39. You, L., Long, S. R., Lynch, V. M. & Anslyn, E. V. Dynamic multi-component hemiaminal assembly. Chem. Eur. J. 17, 11017–11023 (2011).

    Article  CAS  Google Scholar 

  40. Leonard, N. J. & Paukstelis, J. V. Direct synthesis of ternary iminium salts by combination of aldehydes or ketones with secondary amine salts. J. Org. Chem. 28, 3021–3024 (1963).

    Article  CAS  Google Scholar 

  41. Kütt, A. et al. A comprehensive self-consistent spectrophotometric acidity scale of neutral Brønsted acids in acetonitrile. J. Org. Chem. 71, 2829–2838 (2006).

    Article  Google Scholar 

  42. Kaljurand, I. et al. Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: unification of different basicity scales. J. Org. Chem. 70, 1019–1028 (2005).

    Article  CAS  Google Scholar 

  43. Zhang, L., Clark, R. J. & Zhu L. A heteroditopic fluoroionophoric platform for constructing fluorescent probes with large dynamic ranges for zinc ions. Chem. Eur. J. 14, 2894–2903 (2008).

    Article  CAS  Google Scholar 

  44. Gruenwedel, D. W. Multidentate coordination compounds. Chelating properties of aliphatic amines containing α-pyridyl residues and other aromatic ring systems as donor groups. Inorg. Chem. 7, 495–501 (1968).

    Article  CAS  Google Scholar 

  45. Reetz, M. T. Combinatorial and evolution-based methods in the creation of enantioselective catalysts. Angew. Chem. Int. Ed. 40, 284–310 (2001).

    Article  CAS  Google Scholar 

  46. Castagnetto, J. M., Xu, X., Berova, N. D. & Canary, J. W. Absolute configurational assignment of self-organizing asymmetric tripodal ligand–metal complexes. Chirality 9, 616–622 (1997).

    Article  CAS  Google Scholar 

  47. Zahn, S. & Canary, J. W. Electron-induced inversion of helical chirality in copper complexes of N,N-dialkylmethionines. Science 288, 1404–1407 (2000).

    Article  CAS  Google Scholar 

  48. Berova, N., Di Bari, L. & Pescitelli, G. Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem. Soc. Rev. 36, 914–931 (2007).

    Article  CAS  Google Scholar 

  49. Ghosn, M. W. & Wolf, C. Chiral amplification with a stereodynamic triaryl probe: assignment of the absolute configuration and enantiomeric excess of amino alcohols. J. Am. Chem. Soc. 131, 16360–16361 (2009).

    Article  CAS  Google Scholar 

  50. Li, X., Tanasova, M., Vasileiou, C. & Borhan, B. Fluorinated porphyrin tweezer: a powerful reporter of absolute configuration for erythro and threo diols, amino alcohols, and diamines. J. Am. Chem. Soc. 130, 1885–1893 (2008).

    Article  CAS  Google Scholar 

  51. Li, X. & Borhan, B. Prompt determination of absolute configuration for epoxy alcohols via exciton chirality protocol. J. Am. Chem. Soc. 130, 16126–16127 (2008).

    Article  CAS  Google Scholar 

  52. Lintuluoto, J. M., Borovkov, V. V. & Inoue, Y. Direct determination of absolute configuration of monoalcohols by bis(magnesium porphyrin). J. Am. Chem. Soc. 124, 13676–13677 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank B. Shoulders and S. Sorey for NMR assistance, K. Keller for mass spectrometric assistance and E.J. Cho of the Texas Institute for Drug and Diagnostic Development. The authors are grateful for the financial support provided by the National Institutes of Health (GM 077437) and the Welch Foundation (F-1151).

Author information

Authors and Affiliations

Authors

Contributions

L.Y. and E.V.A. developed the strategy and the mechanistic concepts. L.Y. performed the experiments. J.S.B. participated in the reaction optimization. E.V.A. directed the research. L.Y. and E.V.A. wrote the manuscript.

Corresponding author

Correspondence to Eric V. Anslyn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2900 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, L., Berman, J. & Anslyn, E. Dynamic multi-component covalent assembly for the reversible binding of secondary alcohols and chirality sensing. Nature Chem 3, 943–948 (2011). https://doi.org/10.1038/nchem.1198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing