Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis and structure of solution-stable one-dimensional palladium wires

Abstract

One-dimensional metal wires are valuable materials because of their optical and electronic anisotropy, and they have potential utility in devices such as photovoltaic cells and molecular sensors. However, despite more than a century of research, only a few examples exist of well-defined one-dimensional (1D) metal wires that allow for the rational variation of conductivity. Herein we describe the first examples of 1D molecular wires supported by Pd–Pd bonds, the thin-film conductive properties of which can be altered by controlled molecular changes. Wires based on Pd(III) give semiconducting films with a modifiable bandgap, whereas wires based on Pd(2.5) give films that display metallic conductivity above 200 K: a metallic state has not been reported previously for any polymer composed of 1D metal wires. The wires are infinite in the solid state and maintain 1D structures in solution with lengths of up to 750 nm. Solution stability enables thin film coating, a requisite for device fabrication using molecular wires.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of a Pd(III) wire with Pd–Pd bonds.
Figure 2: X-ray crystal structure of 1D Pd(III) wire 5.
Figure 3: UV-vis/NIR absorption spectra of Pd(III) wires.
Figure 4: Temperature-dependent thin-film conductivity of 1D palladium wires 5 and 8.

Similar content being viewed by others

References

  1. Bera, J. K. & Dunbar, K. R. Chain compounds based on transition metal backbones: new life for an old topic. Angew. Chem. Int. Ed. 41, 4453–4457 (2002).

    Article  CAS  Google Scholar 

  2. Hofmann, K. A. & Bugge, G. Platinblau. Chem. Ber. 41, 312–314 (1908).

    Article  CAS  Google Scholar 

  3. Barton, J., Rabinowitz, H., Szalda, D. & Lippard, S. Synthesis and crystal structure of cis-diammineplatinum .alpha.-pyridone blue. J. Am. Chem. Soc. 99, 2827–2829 (1977).

    Article  CAS  Google Scholar 

  4. Lippard, S. New chemistry of an old molecule: cis-[Pt(NH3)2Cl2]. Science 218, 1075–1082 (1982).

    Article  CAS  Google Scholar 

  5. Lippert, B. Impact of cisplatin on the recent development of Pt coordination chemistry: a case study. Coord. Chem. Rev. 182, 263–295 (1999).

    Article  Google Scholar 

  6. Sigal, I. S. & Gray, H. B. Characterization of cationic rhodium isocyanide oligomers in aqueous solutions. J. Am. Chem. Soc. 203, 2220–2225 (1981).

    Article  Google Scholar 

  7. Tejel, C. et al. Discrete mixed-valence metal chains: iridium pyridonate blues. Angew. Chem. Int. Ed. 40, 4084–4086 (2001).

    Article  CAS  Google Scholar 

  8. Miller, J. S. & Epstein, A. J. One-dimensional inorganic complexes. Prog. Inorg. Chem. 20, 1–151 (1976).

    CAS  Google Scholar 

  9. Masciocchi, N., Sironi, A., Chardon-Noblat, S. & Deronzier, A. X-ray powder diffraction study of organometallic polymers: [Ru(L)(CO)2)]n (L = 2,2′-bipyridine or 1,10-phenanthroline). Organometallics 21, 4009–4012 (2002).

    Article  CAS  Google Scholar 

  10. Krogmann, K. Planar complexes containing metal–metal bonds. Angew. Chem. Int. Ed. Engl. 8, 35–42 (1969).

    Article  CAS  Google Scholar 

  11. Finniss, G. M., Canadell, E., Campana, C. & Dunbar, K. R. Unprecedented conversion of a compound with metal–metal bonding into a solvated molecular wire. Angew. Chem. Int. Ed. Engl. 35, 2772–2774 (1996).

    Article  CAS  Google Scholar 

  12. Cotton, F., Dikarev, E. & Petrukhina, M. Studies of tetrakis(trifluoroacetate)dirhodium. Part 4. Solventless synthesis of Rh2(O2CCF3)2(CO)4 combined with Rh2(O2CCF3)4, a compound with infinite chains of rhodium atoms. J. Organomet. Chem. 596, 130–135 (2000).

    Article  CAS  Google Scholar 

  13. Cotton, F., Dikarev, E. & Petrukhina, M. cis-Di(μ-trifluoroacetate)dirhodium tetracarbonyl: structure and chemistry. J. Chem. Soc. Dalton Trans. 4241–4243 (2000).

  14. Lafolet, F. et al. Electrochemical fabrication and characterization of thin films of redox-active molecular wires based on extended Rh–Rh bonded chains. Dalton Trans. 2149–2156 (2008).

  15. Pruchnik, F. P. et al. Rhodium wires based on binuclear acetate-bridged complexes. Inorg. Chem. Commun. 4, 19–22 (2001).

    Article  CAS  Google Scholar 

  16. Swager, T. The molecular wire approach to sensory signal amplification. Acc. Chem. Res. 31, 201–207 (1998).

    Article  CAS  Google Scholar 

  17. Frampton, M. J. & Anderson, H. L. Insulated molecular wires. Angew. Chem. Int. Ed. 46, 1028–1064 (2007).

    Article  CAS  Google Scholar 

  18. Cheng, Y-J., Yang, S-H. & Hsu, C-S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009).

    Article  CAS  Google Scholar 

  19. Habas, S. E., Platt, H. A. A., van Hest, M. F. A. M. & Ginley, D. S. Low-cost inorganic solar cells: from ink to printed device. Chem. Rev. 110, 6571–6594 (2010).

    Article  CAS  Google Scholar 

  20. Carroll, R. & Gorman, C. The genesis of molecular electronics. Angew. Chem. Int. Ed. 41, 4378–4400 (2002).

    Article  Google Scholar 

  21. Georgiev, V. P & McGrady, J. E. Influence of low-symmetry distortions on electron transport through metal atom chains: when is a molecular wire really ‘broken’? J. Am. Chem. Soc. 133, 12590–12599 (2011).

    Article  CAS  Google Scholar 

  22. Roncali, J. Synthetic principles for bandgap control in linear π-conjugated systems. Chem. Rev. 97, 173–205 (1997).

    Article  CAS  Google Scholar 

  23. Jang, K. et al. One-dimensional organometallic molecular wires via assembly of Rh(CO)2Cl(amine): chemical control of interchain distances and optical properties. J. Am. Chem. Soc. 131, 12046–12047 (2009).

    Article  CAS  Google Scholar 

  24. Powers, D. C. & Ritter, T. Bimetallic Pd(III) complexes in palladium-catalysed carbon–heteroam bond formation. Nature Chem. 1, 302–309 (2009).

    Article  CAS  Google Scholar 

  25. Bercaw, J. E. et al. Electronic structures of PdII dimers. Inorg. Chem. 49, 1801–1810 (2010).

    Article  CAS  Google Scholar 

  26. Matsumoto, K. et al. Syntheses, crystal structures, and electronic, ESR, and X-ray photoelectron spectra of acetamidate- and 2-fluoroacetamidate-bridged mixed-valent octanuclear platinum blues. J. Am. Chem. Soc. 114, 8110–8118 (1992).

    Article  CAS  Google Scholar 

  27. O'Halloran, T., Roberts, M. & Lippard, S. Correlation between metal–metal distances and optical spectroscopy in the platinum blues: synthesis, crystal structure, and electronic spectrum of ethylenediamine platinum .alpha.-pyridone blue. J. Am. Chem. Soc. 106, 6427–6428 (1984).

    Article  CAS  Google Scholar 

  28. Nocera, D. G. Chemistry of multielectron excited states. Acc. Chem. Res. 28, 209–217 (1995).

    Article  CAS  Google Scholar 

  29. Berry, J. et al. A fractional bond order of 1/2 in Pd5+2–formamidinate species; the value of very high-field EPR spectra. J. Am. Chem. Soc. 129, 1393–1401 (2007).

    Article  CAS  Google Scholar 

  30. Cotton, F. A., Matusz, M., Poli, R. & Feng, X. Dinuclear formamidinato complexes of nickel and palladium. J. Am. Chem. Soc. 110, 1144–1154 (1988).

    Article  CAS  Google Scholar 

  31. Peierls, R. E. Quantum Theory of Solids (Oxford University Press, 1955).

    Google Scholar 

Download references

Acknowledgements

We thank T.A. Betley, A. Cohen and D.G. Nocera for discussions, S-L. Zheng and P. Müller for X-ray crystallographic analysis, T. Cook for help with NIR spectroscopy, R.A. Cabanas, S. Fraden and C. Schatz for assistance with light scattering, the Air Force Office of Scientific Research (FA9550-10-1-0170) and National Science Foundation (CHE-0952753) for funding and the Department of Energy Office of Science Graduate Fellowship for a graduate fellowship for M.G.C.

Author information

Authors and Affiliations

Authors

Contributions

M.G.C., D.C.P., J.R. and T.R. conceived and designed the experiments, M.G.C., D.C.P., J.R., M.J.G. and P.X. performed the experiments, M.G.C. and E.L. carried out the theoretical calculations and M.G.C., D.C.P., J.R. and T.R. co-wrote the paper.

Corresponding author

Correspondence to Tobias Ritter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 9506 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 25 kb)

Supplementary information

Crystallographic data for compound 5 (CIF 25 kb)

Supplementary information

Crystallographic data for compound 8 at 100 K (CIF 27 kb)

Supplementary information

Crystallographic data for compound 8 at 130 K (CIF 26 kb)

Supplementary information

Crystallographic data for compound 8 at 160 K (CIF 26 kb)

Supplementary information

Crystallographic data for compound 8 at 190 K (CIF 26 kb)

Supplementary information

Crystallographic data for compound 8 at 220 K (CIF 26 kb)

Supplementary information

Crystallographic data for compound 8 at 250 K (CIF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, M., Powers, D., Raynaud, J. et al. Synthesis and structure of solution-stable one-dimensional palladium wires. Nature Chem 3, 949–953 (2011). https://doi.org/10.1038/nchem.1197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing