Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles

Abstract

Colloidal hybrid nanoparticles contain multiple nanoscale domains fused together by solid-state interfaces. They represent an emerging class of multifunctional lab-on-a-particle architectures that underpin future advances in solar energy conversion, fuel-cell catalysis, medical imaging and therapy, and electronics. The complexity of these ‘artificial molecules’ is limited ultimately by the lack of a mechanism-driven design framework. Here, we show that known chemical reactions can be applied in a predictable and stepwise manner to build complex hybrid nanoparticle architectures that include M–Pt–Fe3O4 (M = Au, Ag, Ni, Pd) heterotrimers, MxS–Au–Pt–Fe3O4 (M = Pb, Cu) heterotetramers and higher-order oligomers based on the heterotrimeric Au–Pt–Fe3O4 building block. This synthetic framework conceptually mimics the total-synthesis approach used by chemists to construct complex organic molecules. The reaction toolkit applies solid-state nanoparticle analogues of chemoselective reactions, regiospecificity, coupling reactions and molecular substituent effects to the construction of exceptionally complex hybrid nanoparticle oligomers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Stepwise construction of M–Pt–Fe3O4 heterotrimers (M = Ag, Au, Ni, Pd).
Figure 2: Characterization data for M–Pt–Fe3O4 heterotrimers (M = Au, Ag, Ni, Pd).
Figure 3: Chemoselective nucleation in the Ag–Pt–Fe3O4 heterotrimer system.
Figure 4: Stepwise construction of MxSy–Au–Pt–Fe3O4 heterotetramers (M = Cu, Pb).
Figure 5: Higher-order hetero-oligomers based on the Au–Pt–Fe3O4 heterotrimer building block.

References

  1. Costi, R., Saunders, A. E. & Banin, U. Colloidal hybrid nanostructures: a new type of functional materials. Angew. Chem. Int. Ed. 49, 4878–4897 (2010).

    Article  CAS  Google Scholar 

  2. Wang, C., Xu, C., Zeng, H. & Sun, S. Recent progress in synthesis and applications of dumbbell-like nanoparticles. Adv. Mater. 21, 3045–3052 (2009).

    Article  CAS  Google Scholar 

  3. Cozzoli, P. D., Pellegrino, T. & Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 35, 1195–1208 (2006).

    Article  CAS  Google Scholar 

  4. Costi, R., Saunders, A. E., Elmalem, E., Salant, A. & Banin, U. Visible light-induced charge retention and photocatalysis with hybrid CdSe–Au nanodumbbells. Nano Lett. 8, 637–641 (2008).

    Article  CAS  Google Scholar 

  5. Elmalem, E., Saunders, A. E., Costi, R., Salant, A. & Banin, U. Growth of photocatalytic CdSe–Pt nanorods and nanonets. Adv. Mater. 20, 4312–4317 (2008).

    Article  CAS  Google Scholar 

  6. Xu, C., Wang, B. & Sun, S. Dumbbell-like Au–Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 131, 4216–4217 (2009).

    Article  CAS  Google Scholar 

  7. Yin, H., Wang, C., Zhu, H., Overbury, S. H. & Sun, S. Colloidal deposition synthesis of supported gold nanocatalysts based on Au–Fe3O4 dumbbell nanoparticles. Chem. Commun. 4357–4359 (2008).

  8. Wang, C., Daimon, H. & Sun, S. Dumbbell-like Pt–Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett. 9, 1493–1496 (2009).

    Article  CAS  Google Scholar 

  9. Xu, C. et al. Au–Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew. Chem. Int. Ed. 47, 173–176 (2008).

    Article  CAS  Google Scholar 

  10. Choi, J-S. et al. Biocompatible heterostructured nanoparticles for multimodal biological detection. J. Am. Chem. Soc. 128, 15982–15983 (2006).

    Article  CAS  Google Scholar 

  11. Mokari, T., Rothenberg, E., Popov, I., Costi, R. & Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304, 1787–1790 (2004).

    Article  CAS  Google Scholar 

  12. Figuerola, A. et al. One-pot synthesis and characterization of size-controlled bimagnetic FePt–iron oxide heterodimer nanocrystals. J. Am. Chem. Soc. 130, 1477–1487 (2008).

    Article  CAS  Google Scholar 

  13. Kwon, K-W. & Shim, M. γ-Fe2O3/IIIV sulfide nanocrystal heterojunctions. J. Am. Chem. Soc. 127, 10269–10275 (2005).

    Article  CAS  Google Scholar 

  14. Shi, W. et al. A general approach to binary and ternary hybrid nanocrystals. Nano Lett. 6, 875–881 (2006).

    Article  CAS  Google Scholar 

  15. Casavola, M., Buonsanti, R., Caputo, G. & Cozzoli, P. D. Colloidal strategies for preparing oxide-based hybrid nanocrystals. Eur. J. Inorg. Chem. 6, 837–854 (2008).

    Article  Google Scholar 

  16. Nicolau, K. C., Vourloumis, D., Winssinger, N. & Baran, P. S. The art and science of total synthesis at the dawn of the twenty-first century. Angew. Chem. Int. Ed. 39, 44–122 (2000).

    Article  Google Scholar 

  17. Choi, C. & Alivisatos, A. P. From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. Annu. Rev. Phys. Chem. 61, 369–389 (2010).

    Article  CAS  Google Scholar 

  18. Yu, H. et al. Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano Lett. 5, 379–382 (2005).

    Article  CAS  Google Scholar 

  19. Wang, C., Daimon, H., Onodera, T., Koda, T. & Sun, S. A general approach to size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem. Int. Ed. 47, 3588–3591 (2008).

    Article  CAS  Google Scholar 

  20. Wang, C., Yin, H., Dai, S. & Sun, S. A general approach to noble metal–metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem. Mater. 22, 3277–3282 (2010).

    Article  CAS  Google Scholar 

  21. Gu, H., Yang, Z., Gao, J., Chang, C. K. & Xu, B. Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J. Am. Chem. Soc. 127, 34–35 (2005).

    Article  CAS  Google Scholar 

  22. Xu, Z., Hou, Y. & Sun, S. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 129, 8698–8699 (2007).

    Article  CAS  Google Scholar 

  23. Zhang, H-T., Ding, J., Chow, G-M. & Dong, Z-L. Engineering inorganic hybrid nanoparticles: tuning combination fashions of gold, platinum, and iron oxide. Langmuir 24, 13197–13202 (2008).

    Article  CAS  Google Scholar 

  24. Mazumder, V. & Sun, S. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 131, 4588–4589 (2009).

    Article  CAS  Google Scholar 

  25. Zhang, L., Dou, Y-H. & Gu, H-C. Synthesis of Ag–Fe3O4 heterodimeric nanoparticles. J. Colloid Interface Sci. 297, 660–664 (2006).

    Article  CAS  Google Scholar 

  26. Choi, S-H. et al. Simple and generalized synthesis of oxide–metal heterostructured nanoparticles and their applications in multimodal biomedical probes. J. Am. Chem. Soc. 130, 15573–15580 (2008).

    Article  CAS  Google Scholar 

  27. Jang, Y. et al. Simple synthesis of Pd–Fe3O4 heterodimer nanocrystals and their application as a magnetically recyclable catalyst for Suzuki cross-coupling reactions. Phys. Chem. Chem. Phys. 13, 2512–2516 (2011).

    Article  CAS  Google Scholar 

  28. Casavola, M. et al. Topologically controlled growth of magnetic metal-functionalized semiconductor oxide nanorods. Nano Lett. 7, 1386–1395 (2007).

    Article  CAS  Google Scholar 

  29. Casavola, M. et al. Exchange-coupled bimagnetic cobalt/iron oxide branched nanocrystal heterostuctures. Nano Lett. 9, 366–376 (2009).

    Article  CAS  Google Scholar 

  30. Wang, C. et al. Rational synthesis of heterostructured nanoparticles with morphology control. J. Am. Chem. Soc. 132, 6524–6529 (2010).

    Article  CAS  Google Scholar 

  31. Lide, D. R. CRC Handbook of Chemistry and Physics 87th edn (CRC Press, 2006).

    Google Scholar 

  32. Smith, N. Photoemission spectra and band structures of d-band metals. III. Model band calculations on Rh, Pd, Ag, Ir, Pt, and Au. Phys. Rev. B 9, 1365–1376 (1974).

    Article  CAS  Google Scholar 

  33. Tauster, S. J., Fung, S. C., Baker, R. T. K. & Horsley, J. A. Strong interactions in supported-metal catalysts. Science 211, 1121–1125 (1981).

    Article  CAS  Google Scholar 

  34. Tauster, S. J. Strong metal–support interactions. Acc. Chem. Res. 20, 389–394 (1987).

    Article  CAS  Google Scholar 

  35. Goodman, D. W. ‘Catalytically active Au on titania’: yet another example of a strong metal support interaction (SMSI)? Catal. Lett. 99, 1–4 (2005).

    Article  CAS  Google Scholar 

  36. Horsley, J. A. A molecular orbital study of strong metal–support interaction between platinum and titanium dioxide. J. Am. Chem. Soc. 101, 2870–2874 (1979).

    Article  CAS  Google Scholar 

  37. Ohyama, J., Yamamoto, A., Teramura, K., Shishido, T. & Tanaka, T. Modification of metal nanoparticles with TiO2 and metal–support interaction in photodeposition. ACS Catal. 1, 187–192 (2011).

    Article  CAS  Google Scholar 

  38. Qin, Z-H., Lewandowski, M., Sun, Y-N., Shaikhutdinov, S. & Freund, H-J. Encapsulation of Pt nanoparticles as a result of strong metal–support interaction with Fe3O4 (111). J. Phys. Chem. C 112, 10209–10213 (2008).

    Article  CAS  Google Scholar 

  39. Barr, T. L. Modern ESCA: The Principles and Practice of X-Ray Photoelectron Spectroscopy (CRC Press, 1994).

    Google Scholar 

  40. Weiss, W. & Ranke, W. Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers. Prog. Surf. Sci. 70, 1–151 (2002).

    Article  CAS  Google Scholar 

  41. Lim, W. P., Wong, C. T., Ang, S. L., Low, H. Y. & Chin, W. S. Phase-selective synthesis of copper sulfide nanocrystals. Chem. Mater. 18, 6170–6177 (2006).

    Article  CAS  Google Scholar 

  42. Regulacio, M. D. et al. One-pot synthesis of Cu1.94S–CdS and Cu1.94S–ZnxCd1–xS nanodisk heterostructures. J. Am. Chem. Soc. 133, 2052–2055 (2011).

    Article  CAS  Google Scholar 

  43. Rahlfs, P. The cubic high-temperature modificators of sulfides, selenides, and tellurides of silver and univalent copper. Z. Phys. Chem. B 31, 157–194 (1936).

    Google Scholar 

  44. Rodriguez, J. A. et al. Coverage effects and the nature of the metal–sulfur bond in S/Au(111): high-resolution photoemission and density-functional studies. J. Am. Chem. Soc. 125, 276–285 (2003).

    Article  CAS  Google Scholar 

  45. Carbone, L. & Cozzoli, P. D. Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5, 449–493 (2010).

    Article  CAS  Google Scholar 

  46. Son, D. H., Hughes, S. M., Yin, Y. & Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    Article  CAS  Google Scholar 

  47. Yin, Y. et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004).

    Article  CAS  Google Scholar 

  48. Vasquez, Y., Henkes, A. E., Bauer, J. C. & Schaak, R. E. Nanocrystal conversion chemistry: a unified and materials-general strategy for the template-based synthesis of nanocrystalline solids. J. Solid State Chem. 181, 1509–1523 (2008).

    Article  CAS  Google Scholar 

  49. Beveridge, J. S. et al. Purification and magnetic interrogation of hybrid Au–Fe3O4 and FePt–Fe3O4 nanoparticles. Angew. Chem. Int. Ed. 50, 9875–9879 (2011).

    Article  CAS  Google Scholar 

  50. Latham, A. H., Frietas, R. S., Schiffer, P. & Williams, M. E. Capillary magnetic field flow fractionation and analysis of magnetic nanoparticles. Anal. Chem. 77, 5055–5062 (2005).

    Article  CAS  Google Scholar 

  51. Beveridge, J. S., Stephens, J. R., Latham, A. H. & Williams, M. E. Differential magnetic catch and release: analysis and separation of magnetic nanoparticles. Anal. Chem. 81, 9618–9624 (2009).

    Article  CAS  Google Scholar 

  52. Chen, G. et al. High-purity separation of gold nanoparticle dimers and trimers. J. Am. Chem. Soc. 131, 4218–4219 (2009).

    Article  CAS  Google Scholar 

  53. Wang, Y. et al. A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles. Nat. Commun. 1:87 http://dx.doi.org/10.1038/ncomms1089 (2010).

    Article  Google Scholar 

  54. Leonard, B. M., Anderson, M. E., Oyler, K. D., Phan, T-H. & Schaak, R. E. Orthogonal reactivity of metal and multimetal nanostructures for selective, stepwise, and spatially-controlled solid-state modification. ACS Nano 3, 940–948 (2009).

    Article  CAS  Google Scholar 

  55. Kovalenko, M. et al. Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J. Am. Chem. Soc. 129, 6352–6353 (2007).

    Article  CAS  Google Scholar 

  56. Choi, S-H. et al. Simple and generalized synthesis of semiconducting metal sulfide nanocrystals. Adv. Funct. Mater. 19, 1645–1649 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by the US National Science Foundation (NSF) (CHE-0845258), but with additional partial support to M.R.B. by the Penn State Materials Research Science and Engineering Center (DMR-0820404). Electron microscopy was performed at the Electron Microscopy Facility at the Huck Institutes of the Life Sciences and at the Materials Characterization Facility of the Penn State Materials Research Institute. The authors thank J. Kulik for assistance with collecting the STEM data. The authors also thank V. Bojan for acquisition and interpretation of XPS data and H. Gong for ICP-AES measurements.

Author information

Authors and Affiliations

Authors

Contributions

M.R.B. carried out all of the synthetic work and characterization by XRD, TEM and UV-vis. J.F.B. carried out and analysed the HRTEM, STEM, SAED and EDS element-mapping work. R.E.S. conceived and directed the project. M.R.B. and R.E.S. prepared the manuscript.

Corresponding author

Correspondence to Raymond E. Schaak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1084 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buck, M., Bondi, J. & Schaak, R. A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nature Chem 4, 37–44 (2012). https://doi.org/10.1038/nchem.1195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing