Abstract
Knots are being discovered with increasing frequency in both biological and synthetic macromolecules and have been fundamental topological targets for chemical synthesis for the past two decades. Here, we report on the synthesis of the most complex non-DNA molecular knot prepared to date: the self-assembly of five bis-aldehyde and five bis-amine building blocks about five metal cations and one chloride anion to form a 160-atom-loop molecular pentafoil knot (five crossing points). The structure and topology of the knot is established by NMR spectroscopy, mass spectrometry and X-ray crystallography, revealing a symmetrical closed-loop double helicate with the chloride anion held at the centre of the pentafoil knot by ten CH···Cl– hydrogen bonds. The one-pot self-assembly reaction features an exceptional number of different design elements—some well precedented and others less well known within the context of directing the formation of (supra)molecular species. We anticipate that the strategies and tactics used here can be applied to the rational synthesis of other higher-order interlocked molecular architectures.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Synthesis of covalent organic pillars as molecular nanotubes with precise length, diameter and chirality
Nature Synthesis Open Access 13 February 2023
-
Dimeric and trimeric catenation of giant chiral [8 + 12] imine cubes driven by weak supramolecular interactions
Nature Chemistry Open Access 01 December 2022
-
A trefoil knot self-templated through imination in water
Nature Communications Open Access 21 June 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Wasserman, S. A. & Cozzarelli, N. R. Biochemical topology: applications to DNA recombination and replication. Science 232, 951–960 (1986).
Taylor, W. R. A deeply knotted protein structure and how it might fold. Nature 406, 916–919 (2000).
Taylor, W. R. & Lin, K. Protein knots: a tangled problem. Nature 421, 25 (2003).
Wagner, J. R., Brunzelle, J. S., Forest, K. T. & Vierstra, R. D. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 438, 325–331 (2005).
Taylor, W. R. Protein knots and fold complexity: some new twists. Comput. Biol. Chem. 31, 151–162 (2007).
Saitta, A. M., Soper, P. D., Wasserman, E. & Klein, M. L. Influence of a knot on the strength of a polymer strand. Nature 399, 46–48 (1999).
Arai, Y. et al. Tying a molecular knot with optical tweezers. Nature 399, 446–448 (1999).
Menasco, W. W. & Thistlethwaite, M. B. (eds) Handbook of Knot Theory (Elsevier, 2005).
Fenlon, E. E. Open problems in chemical topology. Eur. J. Org. Chem. 5023–5035 (2008).
Beves, J. E., Blight, B. A., Campbell, C. J., Leigh, D. A. & McBurney, R. T. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew. Chem. Int. Ed. 50, 9260–9327 (2011).
Alexander, J. W. & Briggs, G. B. On types of knotted curves. Ann. Math. 28, 562–586 (1926–1927).
Adams, C. C. The Knot Book (American Mathematical Society, 2004).
Dietrich-Buchecker, C. O. & Sauvage, J-P. A synthetic molecular trefoil knot. Angew. Chem. Int. Ed. Engl. 28, 189–192 (1989).
Piguet, C., Bernardinelli, G. & Hopfgartner, G. Helicates as versatile supramolecular complexes. Chem. Rev. 97, 2005–2062 (1997).
Ashton, P. R. et al. Molecular meccano 27. A template-directed synthesis of a molecular trefoil knot. Liebigs Ann. Recueil 2485–2494 (1997).
Rapenne, G., Dietrich-Buchecker, C. & Sauvage, J-P. Copper(I)- or iron(II)-templated synthesis of molecular knots containing two tetrahedral or octahedral coordination sites. J. Am. Chem. Soc. 121, 994–1001 (1999).
Safarowsky, O., Nieger, M., Fröhlich. R. & Vögtle, F. A molecular knot with twelve amide groups—one-step synthesis, crystal structure, chirality. Angew. Chem. Int. Ed. 39, 1616–1618 (2000).
Lukin, O. & Vögtle, F. Knotting and threading of molecules: chemistry and chirality of molecular knots and their assemblies. Angew. Chem. Int. Ed. 44, 1456–1477 (2005).
Feigel, M., Ladberg, R., Engels, S., Herbst-Irmer, R. & Fröhlich, R. A trefoil knot made of amino acids and steroids. Angew. Chem. Int. Ed. 45, 5698–5702 (2006).
Fenlon, E. E. & Ito, B. R. The thread & cut method: syntheses of molecular knot precursors. Eur. J. Org. Chem. 3065–3068 (2008).
Guo, J., Mayers, P. C., Breault, G. A. & Hunter, C. A. Synthesis of a molecular trefoil knot by folding and closing on an octahedral coordination template. Nature Chem. 2, 218–222 (2010).
Barran, P. E. et al. Active metal template synthesis of a molecular trefoil knot. Angew. Chem. Int. Ed. http://dx.doi.org/10.1002/anie.201105012 (2011).
Carina, R. F., Dietrich-Buchecker, C. & Sauvage, J-P. Molecular composite knots. J. Am. Chem. Soc. 118, 9110–9116 (1996).
Fujita, M., Ibukuro, F., Hagihara, H. & Ogura, K. Quantitative self-assembly of a [2]catenane from two preformed molecular rings. Nature 367, 720–723 (1994).
Wang, L., Vysotsky, M. O., Bogdan, A., Bolte, M. & Böhmer, V. Multiple catenanes derived from calix[4]arenes. Science 304, 1312–1314 (2004).
Lam, R. T. S. et al. Amplification of acetylcholine-binding catenanes from dynamic combinatorial libraries. Science 308, 667–669 (2005).
Ronson, T. K. et al. Stellated polyhedral assembly of a topologically complicated Pd4L4 ‘Solomon cube’. Nature Chem. 1, 212–216 (2009).
Hasell, T. et al. Triply interlocked covalent organic cages. Nature Chem. 2, 750–755 (2010).
Chichak, K. S. et al. Molecular Borromean rings. Science 304, 1308–1312 (2004).
Dietrich-Buchecker, C., Colasson, B., Jouvenot, D. & Sauvage, J-P. Synthesis of multi-1,10-phenanthroline ligands with 1,3-phenylene linkers and their lithium complexes. Chem. Eur. J. 11, 4374–4386 (2005).
Hasenknopf, B., Lehn, J-M., Kneisel, B. O., Baum, G. & Fenske, D. Self-assembly of a circular double helicate. Angew. Chem. Int. Ed. Engl. 35, 1838–1840 (1996).
Hasenknopf, B. et al. Self-assembly of tetra- and hexanuclear circular helicates. J. Am. Chem. Soc. 119, 10956–10962 (1997).
Hasenknopf, B., Lehn, J-M., Boumediene, N., Leize, E. & Van Dorsselaer, A. Kinetic and thermodynamic control in self-assembly: sequential formation of linear and circular helicates. Angew. Chem. Int. Ed. 37, 3265–3268 (1998).
Leigh, D. A., Lusby, P. J., Teat, S. J., Wilson, A. J. & Wong, J. K. Y. Benzylic imine catenates: readily accessible octahedral analogues of the Sauvage catenates. Angew. Chem. Int. Ed. 40, 1538–1543 (2001).
Hogg, L. et al. A simple general ligand system for assembling octahedral metal–rotaxane complexes. Angew. Chem. Int. Ed. 43, 1218–1221 (2004).
Hutin, M., Schalley, C. A., Bernardinelli, G. & Nitschke, J. R. Helicate, macrocycle, or catenate: dynamic topological control over subcomponent self-assembly. Chem. Eur. J. 12, 4069–4076 (2006).
Price, J. R. et al. Copper(I)-templated synthesis of a 2,2′-bipyridine derived [2]catenane: synthetic, modelling, and X-ray studies. Aust. J. Chem. 62, 1014–1019 (2009).
Murcko, M. A. & DiPaola, R. A. Ab initio molecular orbital conformational analysis of prototypical organic systems. 1. Ethylene glycol and 1,2-dimethoxyethane. J. Am. Chem. Soc. 114, 10010–10018 (1992).
Ohsawa, Y., DeArmond, M. K., Hanck, K. W. & Moreland, C. G. A proton NMR study of reduced paramagnetic tris(2,2′-bipyridine) complexes of iron(II), ruthenium(II) and osmium(II). J. Am. Chem. Soc. 107, 5383–5386 (1985).
Mamula, O., von Zelewsky, A. & Bernardinelli, G. Completely stereospecific self-assembly of a circular helicate. Angew. Chem. Int. Ed. 37, 290–293 (1998).
Krämer, R., Lehn, J-M. & Marquis-Rigault, A. Self-recognition in helicate self-assembly: spontaneous formation of helical metal complexes from mixtures of ligands and metal ions. Proc. Natl Acad. Sci. USA 90, 5394–5398 (1993).
Albrecht, M. ‘Let's twist again’—double-stranded, triple-stranded, and circular helicates. Chem. Rev. 101, 3457–3497 (2001).
Nitschke, J. R. Construction, substitution, and sorting of metallo-organic structures via subcomponent self-assembly. Acc. Chem. Res. 40, 103–112 (2007).
Acknowledgements
The authors thank the Diamond Light Source (UK) for synchrotron beamtime on I19 (XR029), the Engineering and Physical Sciences Research Council (EPSRC) National Crystallography Service for data collection, and the EPSRC National Mass Spectrometry Service Centre (Swansea, UK) and C.L. Mackay (SIRCAMS, University of Edinburgh) for high-resolution mass spectrometry. J.E.B. and D.S. are Swiss National Science Foundation postdoctoral fellows. This research was funded by the EPSRC and the Academy of Finland (K.R., projects 212588 and 218325).
Author information
Authors and Affiliations
Contributions
J-F.A., J.E.B., R.T.M. and D.S. carried out the synthesis and characterization studies, helped plan the experiments, and participated in the preparation of the manuscript. K.R. solved the crystal structure. D.A.L. helped plan the experiments and prepare the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1375 kb)
Supplementary information
Crystallographic data for compound 6 (CIF 117 kb)
Rights and permissions
About this article
Cite this article
Ayme, JF., Beves, J., Leigh, D. et al. A synthetic molecular pentafoil knot. Nature Chem 4, 15–20 (2012). https://doi.org/10.1038/nchem.1193
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.1193
This article is cited by
-
Synthesis of covalent organic pillars as molecular nanotubes with precise length, diameter and chirality
Nature Synthesis (2023)
-
Dimeric and trimeric catenation of giant chiral [8 + 12] imine cubes driven by weak supramolecular interactions
Nature Chemistry (2023)
-
Molecular weaving
Nature Materials (2022)
-
A trefoil knot self-templated through imination in water
Nature Communications (2022)
-
Controlling dynamics in extended molecular frameworks
Nature Reviews Chemistry (2022)