Large-scale screening of hypothetical metal–organic frameworks


Metal–organic frameworks (MOFs) are porous materials constructed from modular molecular building blocks, typically metal clusters and organic linkers. These can, in principle, be assembled to form an almost unlimited number of MOFs, yet materials reported to date represent only a tiny fraction of the possible combinations. Here, we demonstrate a computational approach to generate all conceivable MOFs from a given chemical library of building blocks (based on the structures of known MOFs) and rapidly screen them to find the best candidates for a specific application. From a library of 102 building blocks we generated 137,953 hypothetical MOFs and for each one calculated the pore-size distribution, surface area and methane-storage capacity. We identified over 300 MOFs with a predicted methane-storage capacity better than that of any known material, and this approach also revealed structure–property relationships. Methyl-functionalized MOFs were frequently top performers, so we selected one such promising MOF and experimentally confirmed its predicted capacity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Visual summary of the hypothetical MOF-generation strategy.
Figure 2: Influence of structural variations on predicted methane adsorption.
Figure 3: Partial list of building blocks used in the large-scale screening process.
Figure 4: Adaptive three-stage screening to identify the best MOFs for methane storage.
Figure 5: Structure–property relationships obtained from the database of hypothetical MOFs.
Figure 6: Comparison of experimental and simulated isotherms for NOTT-107 and PCN 14.


  1. 1

    Rosi, N. L. et al. Hydrogen storage in microporous metal–organic frameworks. Science 300, 1127–1129 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Wang, B., Côté, A. P., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Ferey, G. Physical chemistry: trapped gas. Nature 436, 187–188 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Matsuda, R. et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature 436, 238–241 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Düren, T., Sarkisov, L., Yaghi, O. M. & Snurr, R. Q. Design of new materials for methane storage. Langmuir 20, 2683–2689 (2004).

    Article  Google Scholar 

  6. 6

    Murray, L., Dinca, M. & Long, J. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Seo, J. et al. A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Bradshaw, D., Prior, T. J., Cussen, E. J., Claridge, J. B. & Rosseinsky, M. J. Permanent microporosity and enantioselective sorption in a chiral open framework. J. Am. Chem. Soc. 126, 6106–6114 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Düren, T. & Snurr, R. Q. Assessment of isoreticular metal–organic frameworks for adsorption separations: a molecular simulation study of methane/n-butane mixtures. J. Phys. Chem. B 108, 15703–15708 (2004).

    Article  Google Scholar 

  10. 10

    Watanabe, T., Keskin, S., Nair, S. & Sholl, D. S. Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations: Cu(hfipbb)(H2hfipbb)0.5 . Phys. Chem. Chem. Phys. 11, 11389–11394 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Liu, B. et al. Enhanced adsorption selectivity of hydrogen/methane mixtures in metal–organic frameworks with interpenetration: a molecular simulation study. J. Phys. Chem. C 112, 9854–9860 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Li, J-R., Kuppler, R. J. & Zhou, H-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2419 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Lan, A. et al. A luminescent microporous metal–organic framework for the fast and reversible detection of high explosives. Angew. Chem. Int. Ed. 48, 2334–2338 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Franke, M. E. et al. Development and working principle of an ammonia gas sensor based on a refined model for solvate supported proton transport in zeolites. Phys. Chem. Chem. Phys. 5, 5195–5198 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Allendorf, M. D. et al. Stress-induced chemical detection using flexible metal–organic frameworks. J. Am. Chem. Soc. 130, 14404–14405 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Kokotailo, G. T., Lawton, S. L., Olson, D. H. & Meier, W. M. Structure of synthetic zeolite ZSM-5. Nature 272, 437–438 (1978).

    CAS  Article  Google Scholar 

  19. 19

    Kitagawa, S., Kitaura, R. & Noro, S-I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Ferey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Furukawa, H. et al. Ultrahigh porosity in metal–organic frameworks. Science 329, 424–428 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Ferey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Chae, H. K. et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chem. 2, 944–948 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Zaworotko, M. J. Materials science: designer pores made easy. Nature 451, 410–411 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Moulton, B. & Zaworotko, M. J. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101, 1629–1658 (2001).

    CAS  Article  Google Scholar 

  28. 28

    Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 38, 176–182 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Eddaoudi, M. et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Perry, J. J. IV & Perman, J. A. Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38, 1400–1417 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Vaidhyanathan, R. et al. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Frost, H., Düren, T. & Snurr, R. Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal–organic frameworks. J. Phys. Chem. B 110, 9565–9570 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Earl, D. J. & Deem, M. W. Toward a database of hypothetical zeolite structures. Ind. Eng. Chem. Res. 45, 5449–5454 (2006).

    CAS  Article  Google Scholar 

  36. 36

    Haldoupis, E., Nair, S. & Sholl, D. S. Pore size analysis of >250,000 hypothetical zeolites. Phys. Chem. Chem. Phys. 13, 5053–5060 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Baerlocher, Ch. & McCusker, L. B. Database of zeolite structures:

  38. 38

    Haldoupis, E., Nair, S. & Sholl, D. S. Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations. J. Am. Chem. Soc. 7258–7539 (2010).

  39. 39

    Lin, X. et al. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J. Am. Chem. Soc. 131, 2159–2171 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Ma, S. et al. Metal–organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc. 130, 1012–1016 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Chui, S. S-Y., Lo, S. M-F., Charman, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n . Science 283, 1148–1150 (1999).

    CAS  Article  Google Scholar 

  42. 42

    Barthelet, K., Marrot, J., Riou, D. & Férey, G. A breathing hybrid organic–inorganic solid with very large pores and high magnetic characteristics. Angew. Chem. Int. Ed. 41, 281–284 (2002).

    CAS  Article  Google Scholar 

  43. 43

    Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. III & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  Google Scholar 

  44. 44

    Materials Studio v 5.0. Accelrys Software Inc., San Diego, California 92121, USA.

  45. 45

    Düren, T., Bae, Y.-S. & Snurr, R. Q. Using molecular simulation to characterise metal–organic frameworks for adsorption applications. Chem. Soc. Rev. 38, 1237–1247 (2009).

    Article  Google Scholar 

  46. 46

    Menon, V. C. & Komarneni, S. Porous adsorbents for vehicular natural gas storage: a review. J. Porous Mater. 5, 43–58 (1998).

    CAS  Article  Google Scholar 

  47. 47

    Zhou, W. Methane storage in porous metal–organic frameworks: current records and future perspectives. Chem. Rec. 10, 200–204 (2010).

    CAS  Article  Google Scholar 

  48. 48

    Senkovska, I. & Kaskel, S. High pressure methane adsorption in the metal–organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3 . Micropor. Mesopor. Mat. 112, 108–115 (2008).

    CAS  Article  Google Scholar 

  49. 49

    Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).

    CAS  Article  Google Scholar 

  50. 50

    Wu, H. et al. Metal–organic frameworks with exceptionally high methane uptake: where and how is methane stored? Chem. Eur. J. 16, 5205–5214 (2010).

    CAS  Article  Google Scholar 

  51. 51

    Walton, K. S. & Snurr, R. Q. Applicability of the BET method for determining surface areas of microporous metal–organic frameworks. J. Am. Chem. Soc. 129, 8552–8556 (2007).

    CAS  Article  Google Scholar 

  52. 52

    Xu, Q. & Zhong, C. A general approach for estimating framework charges in metal–organic frameworks. J. Phys. Chem. C 114, 5035–5042 (2010).

    CAS  Article  Google Scholar 

  53. 53

    Wilmer, C. E. & Snurr, R. Q. Towards rapid computational screening of metal–organic frameworks for carbon dioxide capture: calculation of framework charges via charge equilibration. Chem. Eng. J. 171, 775–781 (2011).

    CAS  Article  Google Scholar 

Download references


The authors thank Y. Aktan and M. Tsao for the supporting calculations, as well as M.A. Wilmer for significant contributions to the website interface to the hypothetical MOF database. R.Q.S. acknowledges support by the Defense Threat Reduction Agency (grant HDTRA1-09-1-0007). Computational work was supported through the resources provided by Information Technology at Northwestern University as part of its shared cluster program, Quest. J.T.H. and O.K.F. acknowledge support from the US Deptartment of Energy, Office of Science, Basic Energy Sciences program (grant DE-FG02-08ER15967) and the Northwestern Nanoscale Science and Engineering Center. C.E.W. acknowledges support from a Fellowship from the Initiative for Sustainability and Energy at Northwestern and a Ryan Fellowship from the Northwestern University International Institute for Nanotechnology.

Author information




C.E.W. designed the research, implemented the algorithms and performed the simulations with assistance from M.L. and guidance from R.Q.S. O.K.F helped in ligand and node selection. The NOTT-107 ligand was synthesized by O.K.F. and C.Y.L. NOTT-107 was synthesized and activated by O.K.F. NOTT-107 physical characterization was done by B.G.H. Experimental data interpretation and MOF-activation methodology was developed by J.T.H. and O.K.F. All authors discussed the results, contributed to writing the manuscript and commented on it.

Corresponding author

Correspondence to Randall Q. Snurr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2451 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilmer, C., Leaf, M., Lee, C. et al. Large-scale screening of hypothetical metal–organic frameworks. Nature Chem 4, 83–89 (2012).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing