Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Remodelling of the natural product fumagillol employing a reaction discovery approach

Abstract

In the search for new biologically active molecules, diversity-oriented synthetic strategies break through the limitation of traditional library synthesis by sampling new chemical space. Many natural products can be regarded as intriguing starting points for diversity-oriented synthesis, wherein stereochemically rich core structures may be reorganized into chemotypes that are distinctly different from the parent structure. Ideally, to be suited to library applications, such transformations should be general and involve few steps. With this objective in mind, the highly oxygenated natural product fumagillol has been successfully remodelled in several ways using a reaction-discovery-based approach. In reactions with amines, excellent regiocontrol in a bis-epoxide opening/cyclization sequence can be obtained by size-dependent interaction of an appropriate catalyst with the parent molecule, forming either perhydroisoindole or perhydroisoquinoline products. Perhydroisoindoles can be further remodelled by cascade processes to afford either morpholinone or bridged 4,1-benzoxazepine-containing structures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural product remodelling using fumagillol.
Figure 2: Mechanistic studies of bis-epoxide ring opening.
Figure 3: Use of amino-acid esters as reaction partners.
Figure 4: Metal triflate catalysed reactions of fumagillol with 2-ethynylaniline.

Similar content being viewed by others

References

  1. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Galloway, W. R. J. D., Isidro-Llobet, A. & Spring, D. R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nature Commun. 1, 80 (2010).

    Article  CAS  Google Scholar 

  3. Clemons, P. A. et al. Quantifying structure and performance diversity for sets of small molecules comprising small-molecule screening collections. Proc. Natl Acad. Sci. USA 108, 6817–6822 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clemons, P. A. et al. Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc. Natl Acad. Sci. USA 107, 18787–18792 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mang, C. et al. Natural products in combinatorial chemistry: an andrographolide-based library. J. Comb. Chem. 8, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Schwarz, O. et al. Natural products in parallel chemistry-novel 5-lipoxygenase inhibitors from BIOS-based libraries starting from α-santonin. J. Comb. Chem. 9, 1104–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Frank, L. et al. Identification of natural-product-derived inhibitors of 5-lipoxygenase activity by ligand-based virtual screening. J. Med. Chem. 50, 2640–2646 (2007).

    Article  CAS  Google Scholar 

  8. Tan, D. S., Foley, M. A., Shair, M. D. & Schreiber, S. L. Stereoselective synthesis of over two million compounds having structural features both reminiscent of natural products and compatible with miniaturized cell-based assays. J. Am. Chem. Soc. 120, 8565–8566 (1998).

    Article  CAS  Google Scholar 

  9. Miao, H. et al. Ring-opening and ring-closing reactions of a shikimic acid-derived substrate leading to diverse small molecules. J. Comb. Chem. 9, 245–253 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Lewis, C. A. & Miller, S. J. Site-selective derivatization and remodeling of erythromycin A by using simple peptide-based chiral catalysts. Angew. Chem. Int. Ed. 45, 5616–5619 (2006).

    Article  CAS  Google Scholar 

  11. Lewis, C. A., Longcore, K. E., Miller, S. J. & Wender, P. A. An approach to site-selective diversification of apoptolidin A with peptide-based catalysts. J. Nat. Prod. 72, 1864–1869 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Appendino, G., Tron, G. C., Jarevång, T. & Sterner, O. Unnatural natural products from the transannular cyclization of lathyrane diterpenes. Org. Lett. 3, 1609–1612 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Li, F. et al. Iminonitroso Diels–Alder reactions for efficient derivatization and functionalization of complex diene-containing natural products. Org. Lett. 15, 2923–2926 (2007).

    Article  CAS  Google Scholar 

  14. Krchňák, V. et al. Evolution of natural product scaffolds by acyl-arylnitroso hetero-Diels–Alder reactions: new chemistry on piperine. J. Org. Chem. 73, 4559–4567 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. Beeler, A. B., Su, S., Singleton, C. A. & Porco, J. A. Jr. Discovery of chemical reactions through multidimensional screening. J. Am. Chem. Soc. 129, 1413–1419 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Han, C. et al. Reaction discovery employing macrocycles: transannular cyclization of macrocyclic bis-lactams. Org. Lett. 11, 413–416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jones, A. L. & Snyder, J. K. Synthesis of unique scaffolds via Diels–Alder cycloadditions of tetrasubstituted cyclohexadienes. Org. Lett. 12, 1592–1595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Medeiros, M. R., Narayan, R. S., McDougal, N. T., Schaus, S. E. & Porco, J. A. Jr. Skeletal diversity via cationic rearrangements of substituted dihydropyrans. Org. Lett. 12, 3222–3225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hanson, F. R. & Eble, T. E. Fumagillin and preparation. US patent 2,652,356 (1950).

  20. Tarbell, D. S. et al. The chemistry of fumagillin. J. Am. Chem. Soc. 83, 3096–3113 (1961).

    Article  CAS  Google Scholar 

  21. Yamaguchi, J. & Hayashi, Y. Syntheses of fumagillin and ovalicin. Chem. Eur. J. 16, 3884–3901 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Ingber, D. et al. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth. Nature 348, 555–557 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, S., Widom, J., Kemp, C. W., Crews, C. M. & Clardy, J. Structure of human methionine aminopeptidase-2 complexed with fumagillin. Science 282, 1324–1327 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Lu, J., Chong, C. R., Hu, X. & Liu, J. O. Fumarranol, a rearranged fumagillin analogue that inhibits angiogenesis in vivo. J. Med. Chem. 49, 5645–5648 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Lins, L. et al. Importance of hydrophobic energy: structural determination of a hypoglycemic drug of the meglitinide family by nuclear magnetic resonance and molecular modeling. Biochem. Pharmacol. 52, 1155–1168 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Giraud, E. et al. Multivariate data analysis using D-optimal designs, partial least squares, and response surface modeling: a directional approach for the analysis of farnesyltransferase inhibitors. J. Med. Chem. 43, 1807–1816 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Jiang, J. et al. Potent, brain-penetrant, hydroisoindoline-based human neurokinin-1 receptor antagonists. J. Med. Chem. 52, 3039–3046 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Hansen, M. M. et al. An enantioselective synthesis of cis-perhydroisoquinoline LY235959. J. Org. Chem. 63, 775–785 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Rennison, D. et al. Cinnamoyl derivatives of 7α-aminomethyl-6,14-endo-ethanotetrahydrothebaine and 7α-aminomethyl-6,14-endo-ethanotetrahydrooripavine and related opioid ligands. J. Med. Chem. 50, 5176–5182 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frankowski, K. J. et al. N-Alkyl-octhydroisoquinoline-1-one-8-carboxamides: selective and nonbasic κ-opioid receptor ligands. ACS Med. Chem. Lett. 1, 189–193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barrett, A. G. M., Braddock, D. C., Henschke, J. C. & Walker, E. R. Ytterbium(III) triflate-catalyzed preparation of calix[4]resorcinarenes: Lewis-assisted Brønsted acidity. J. Chem. Soc. Perkin Trans. 1 873–878 (1999).

  32. Dumeunier, R. & Markó, I. E. On the role of triflic acid in the metal triflate-catalyzed acylation of alcohols. Tetrahedron Lett. 45, 825–829 (2004).

    Article  CAS  Google Scholar 

  33. Fujiwara, K., Tokiwano, T. & Murai, A. La(OTf)3-catalysed 6-endo epoxide opening of 4,5-epoxy-4-methoxymethyl-1-hexanols. Tetrahedron Lett. 36, 8063–8066 (1995).

    Article  CAS  Google Scholar 

  34. Fujiwara, K., Mishima, H., Amano, A., Tokiwano, T. & Murai, A. La(OTf)3-catalyzed 7-endo and 8-endo selective cyclizations of hydroxy epoxides. Tetrahedron Lett. 39, 393–396 (1998).

    Article  CAS  Google Scholar 

  35. Marson, C. M. Oxygen-directed carbocyclizations of epoxides. Tetrahedron 56, 8779–8794 (2000).

    Article  CAS  Google Scholar 

  36. Goodell, J. R., Leng, B., Snyder, T. K., Beeler, A. B. & Porco, J. A. Jr. Multidimensional screening and methodology development for condensations involving complex 1,2-diketones. Synthesis 2254–2270 (2010).

  37. Fardis, M. et al. Design, synthesis and evaluation of a series of novel fumagillin analogues. Bioorg. Med. Chem. 11, 5051–5058 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Pyun, H.-J. et al. Investigation of novel fumagillin analogues as angiogenesis inhibitors. Bioorg. Med. Chem. Lett. 14, 91–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Das, J. et al. Substituent activity relationship studies on new azolo benzoxazepinyl oxazolidinones. Bioorg. Med. Chem. 14, 8032–8042 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Díaz-Gavilán, M. et al. Anticancer activity of (1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl)-pyrimidines and -purines against the MCF-7 cell line: preliminary cDNA microarray studies. Bioorg. Med. Chem. Lett. 18, 1457–1460 (2008).

    Article  PubMed  CAS  Google Scholar 

  41. López-Cara, L. C. et al. New (RS)-benzoxazepin-purines with antitumor activity: the chiral switch from (RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3, 5-tetrahydro-4,1-benzoxazepin-3-yl]-9H-purine. Eur. J. Med. Chem. 46, 249–258 (2011).

    Article  PubMed  CAS  Google Scholar 

  42. Bhunia, S., Wang, K.-C. & Liu, R.-S. PtII-catalyzed synthesis of 9-oxabicyclo[3.3.1]nona-2,6-dienes from 2-alkynyl-1-carbonylbenzenes and allylsilanes by an allylation/annulation cascade. Angew. Chem. Int. Ed. 47, 5063–5066 (2008).

    Article  CAS  Google Scholar 

  43. Barluenga, J. et al. Tandem intramolecular hydroalkoxylation–hydroarylation reactions: synthesis of enantiopure benzofused cyclic ethers from the chiral pool. Chem. Eur J. 14, 4153–4156 (2008).

    Article  PubMed  CAS  Google Scholar 

  44. Barluenga, J., Fernández, A., Diéguez, A., Rodríguez, F. & Fañanás, F. J. Gold- or platinum-catalyzed cascade processes of alkynol derivatives involving hydroxylation reactions followed by Prins-type cyclizations. Chem. Eur. J. 15, 11660–11667 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Fañanás, F. J., Fernández, A., Çevic, D. & Rodríguez, F. An expeditious synthesis of bruguierol A. J. Org. Chem. 74, 932–934 (2009).

    Article  PubMed  CAS  Google Scholar 

  46. Yu, X., Seo, S. Y. & Marks, T. J. Effective, selective hydroalkoxylation/cyclization of alkynyl and allenyl alcohols mediated by lanthanide catalysts. J. Am. Chem. Soc. 129, 7244–7245 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Motto, A., Fragalà, I. L. & Marks, T. J. Atom-efficient carbon–oxygen bond formation process. DFT analysis of the intramolecular hydroalkoxylation/cyclization of alkynyl alcohols mediated by lanthanide catalysis. Organometallics 29, 2004–2012 (2010).

    Article  CAS  Google Scholar 

  48. Olier, C., Kaafarani, M., Gastaldi, S. & Bertrand, M. P. Synthesis of tetrahydropyrans and related heterocycles via Prins cyclization; extension to aza-Prins cyclization. Tetrahedron 66, 413–445 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the NIGMS CMLD initiative (P50 GM067041) for financial support, the National Science Foundation for supporting the purchase of NMR (CHE 0619339) and high-resolution mass spectrometry (CHE 0443618) spectrometers, and the Boston University Undergraduate Research Opportunities Program for support to M.C.M. The authors also thank Jia-He Li of Sinova Inc. for the generous donation of fumagillin.

Author information

Authors and Affiliations

Authors

Contributions

B.R.B. and M.C.M. carried out the experimental work. A.B.B., J.A.P. and J.S.K. provided oversight. B.R.B, J.A.P. and J.S.K. conceived the experiments and wrote the manuscript.

Corresponding authors

Correspondence to John A. Porco Jr or John K. Snyder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 24445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balthaser, B., Maloney, M., Beeler, A. et al. Remodelling of the natural product fumagillol employing a reaction discovery approach. Nature Chem 3, 969–973 (2011). https://doi.org/10.1038/nchem.1178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing