Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stability of quantum dots in live cells

Abstract

Quantum dots are highly fluorescent and photostable, making them excellent tools for imaging. When using these quantum dots in cells and animals, however, intracellular biothiols (such as glutathione and cysteine) can degrade the quantum dot monolayer, compromising function. Here, we describe a label-free method to quantify the intracellular stability of monolayers on quantum dot surfaces that couples laser desorption/ionization mass spectrometry with inductively coupled plasma mass spectrometry. Using this new approach we have demonstrated that quantum dot monolayer stability is correlated with both quantum dot particle size and monolayer structure, with appropriate choice of both particle size and ligand structure required for intracellular stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantification of quantum dot stability in cells using integrated ICP-MS and LDI-MS.
Figure 2: LDI-MS measurements of monolayer amounts on quantum dots.
Figure 3: Measurement of monolayer release from quantum dots in cells.
Figure 4: Quantum dot monolayer stability as a function of intracellular GSH concentration.

Similar content being viewed by others

References

  1. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).

    Article  CAS  Google Scholar 

  2. Zrazhevskiy, P., Sena, M. & Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 39, 4326–4354 (2010).

    Article  CAS  Google Scholar 

  3. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  4. Chan, W. C. W. & Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  5. Smith, A. M., Duan, H. W., Mohs, A. M. & Nie, S. M. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 60, 1226–1240 (2008).

    Article  CAS  Google Scholar 

  6. Alivisatos, A. P., Gu, W. W. & Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 (2005).

    Article  CAS  Google Scholar 

  7. Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003).

    Article  CAS  Google Scholar 

  8. Lidke, D. S. et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nature Biotechnol. 22, 198–203 (2004).

    Article  CAS  Google Scholar 

  9. Choi, H. S. et al. Renal clearance of quantum dots. Nature Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  Google Scholar 

  10. Smith, A. M., Duan, H., Rhyner, M. N., Ruan, G. & Nie, S. A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys. Chem. Chem. Phys. 8, 3895–3903 (2006).

    Article  CAS  Google Scholar 

  11. Susumu, K. et al. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J. Am. Chem. Soc. 129, 13987–13996 (2007).

    Article  CAS  Google Scholar 

  12. Liu, W. et al. Compact biocompatible quantum dots functionalized for cellular imaging. J. Am. Chem. Soc. 130, 1274–1284 (2008).

    Article  CAS  Google Scholar 

  13. Stewart, M. H. et al. Multidentate poly(ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions. J. Am. Chem. Soc. 132, 9804–9813 (2010).

    Article  CAS  Google Scholar 

  14. Li, D. et al. Glutathione-mediated release of functional plasmid DNA from positively charged quantum dots. Biomaterials 29, 2776–2782 (2008).

    Article  CAS  Google Scholar 

  15. Han, G. et al. Controlled recovery of the transcription of nanoparticle-bound DNA by intracellular concentrations of glutathione. Bioconjugate Chem. 16, 1356–1359 (2005).

    Article  CAS  Google Scholar 

  16. Hong, R. et al. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc. 128, 1078–1079 (2006).

    Article  CAS  Google Scholar 

  17. Chompoosor, A., Han, G. & Rotello, V. M. Charge dependence of ligand release and monolayer stability of gold nanoparticles by biogenic thiols. Bioconjug. Chem. 19, 1342–1345 (2008).

    Article  CAS  Google Scholar 

  18. Pace, H. E., Lesher, E. K. & Ranville, J. F. Influence of stability on the acute toxicity of CdSe/ZnS nanocrystals to Daphnia magna. Environ. Toxicol. Chem. 29, 1338–1344 (2010).

    CAS  PubMed  Google Scholar 

  19. Li-Shishido, S., Watanabe, T. M., Tada, H., Higuchi, H. & Ohuchi, N. Reduction in nonfluorescence state of quantum dots on an immunofluorescence staining. Biochem. Biophys. Res. Commun. 351, 7–13 (2006).

    Article  CAS  Google Scholar 

  20. Zhang, F., Ali, Z., Amin, F., Riedinger, A. & Parak, W. In vitro and intracellular sensing by using the photoluminescence of quantum dots. Anal. Bioanal. Chem. 397, 935–942 (2010).

    Article  CAS  Google Scholar 

  21. Park, C. & Yoon, T. H. l-Cysteine-induced photoluminescence enhancement of CdSe/ZnSe quantum dots in aqueous solution. Colloids Surf. B 75, 472–477 (2010).

    Article  CAS  Google Scholar 

  22. Zhu, Z. J., Ghosh, P. S., Miranda, O. R., Vachet, R. W. & Rotello, V. M. Multiplexed screening of cellular uptake of gold nanoparticles using laser desorption/ionization mass spectrometry. J. Am. Chem. Soc. 130, 14139–14143 (2008).

    Article  CAS  Google Scholar 

  23. Zhu, Z. J., Rotello, V. M. & Vachet, R. W. Engineered nanoparticle surfaces for improved mass spectrometric analyses. Analyst 134, 2183–2188 (2009).

    Article  CAS  Google Scholar 

  24. Yan, B. et al. Laser desorption/ionization mass spectrometry analysis of monolayer-protected gold nanoparticles. Anal. Bioanal. Chem. 396, 1025–1035 (2010).

    Article  CAS  Google Scholar 

  25. Al-Hajaj, N. A. et al. Short ligands affect modes of QD uptake and elimination in human cells. ACS Nano 5, 4909–4918 (2011).

    Article  CAS  Google Scholar 

  26. Pisoni, R. L., Acker, T. L., Lisowski, K. M., Lemons, R. M. & Thoene, J. G. A cysteine-specific lysosomal transport system provides a major route for the delivery of thiol to human fibroblast lysosomes: possible role in supporting lysosomal proteolysis. J. Cell Biol. 110, 327–335 (1990).

    Article  CAS  Google Scholar 

  27. Pisoni, R. L., Park, G. Y., Velilla, V. Q. & Thoene, J. G. Detection and characterization of a transport-system mediating cysteamine entry into human fibroblast lysosomes—specificity for aminoethylthiol and aminoethylsulfide derivatives. J. Biol. Chem. 270, 1179–1184 (1995).

    Article  CAS  Google Scholar 

  28. Krepela, E., Prochazka, J. & Karova, B. Regulation of cathepsin B activity by cysteine and related thiols. Biol. Chem. 380, 541–551 (1999).

    Article  CAS  Google Scholar 

  29. Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006).

    Article  CAS  Google Scholar 

  30. Hostetler, M. J. et al. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14, 17–30 (1998).

    Article  CAS  Google Scholar 

  31. Hill, H. D., Millstone, J. E., Banholzer, M. J. & Mirkin, C. A. The role radius of rurvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3, 418–424 (2009).

    Article  CAS  Google Scholar 

  32. Olmos-Asar, J. A., Rapallo, A. & Mariscal, M. M. Development of a semiempirical potential for simulations of thiol–gold interfaces. Application to thiol-protected gold nanoparticles. Phys. Chem. Chem. Phys. 13, 6500–6506 (2011).

    Article  CAS  Google Scholar 

  33. Mei, B. C. et al. Effects of ligand coordination number and surface curvature on the stability of gold nanoparticles in aqueous solutions. Langmuir 25, 10604–10611 (2009).

    Article  CAS  Google Scholar 

  34. Puri, R. N. & Meister, A. Transport of glutathione, as γ-glutamylcysteinylglycyl ester, into liver and kidney. Proc. Natl Acad. Sci. USA 80, 5258–5260 (1983).

    Article  CAS  Google Scholar 

  35. Yeh, Y.-C. et al. Synthesis of cationic quantum dots via a two-step ligand exchange process. Chem. Commun. 47, 3069–3071 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the National Institutes of Health (grants R21 ES017871-01 and GM077173-05) and through the Center for Hierarchical Manufacturing (National Science Foundation grant DMI-0531171). The authors thank J.F. Tyson for access to the ICP-MS instrumentation, and B. Creran for assistance with transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Contributions

Z.J.Z., V.M.R. and R.W.V. conceived and designed the experiments. Z.J.Z., Y.C.Y., R.T., B.Y. and J.T. performed the experiments. All authors analysed and discussed the data. Z.J.Z. wrote the manuscript, with revisions by V.M.R. and R.W.V.

Corresponding authors

Correspondence to Richard W. Vachet or Vincent M. Rotello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, ZJ., Yeh, YC., Tang, R. et al. Stability of quantum dots in live cells. Nature Chem 3, 963–968 (2011). https://doi.org/10.1038/nchem.1177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1177

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research