Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Single-chain technology using discrete synthetic macromolecules

Abstract

Fundamental polymer science is undergoing a profound transformation. As a result of recent progress in macromolecular chemistry and physics, synthetic polymer chains are becoming much more than just the modest building blocks of traditional 'plastics'. Promising options for controlling the primary and secondary structures of synthetic polymers have been proposed and, therefore, similarly to biopolymers, synthetic macromolecules may now be exploited as discrete objects with carefully engineered structures and functions. Although it is not possible today to reach the high level of complexity found in biomaterials, these new chemical possibilities open interesting avenues for applications in microelectronics, photovoltaics, catalysis and biotechnology. Here, we describe in detail these recent advances in macromolecular science and emphasize the possible emergence of technologies based on single-chain devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies for the synthesis of polymers with controlled primary structures.
Figure 2: Reported strategies for compacting amorphous random coils into unimolecular nanoparticles.
Figure 3: AFM visualization and manipulation of synthetic polymer chains.
Figure 4: Manipulation of molecular wires by STM.
Figure 5: Single-chain photosynthetic antenna.

Similar content being viewed by others

Zhi-Hui Zhang, Björn J. Andreassen, … Liang Zhang

References

  1. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  2. Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 487–492 (2004).

    Article  CAS  Google Scholar 

  3. Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater. 9, 101–113 (2010).

    Article  Google Scholar 

  4. Tomalia, D. A., Naylor, A. M. & Goddard, W. A. Starburst dendrimers - molecular-level control of size, shape, surface-chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl. 29, 138–175 (1990).

    Article  Google Scholar 

  5. Hecht, S. & Fréchet, J. M. J. Dendritic encapsulation of function: applying nature's site isolation principle from biomimetics to materials science. Angew. Chem. Int. Ed. 40, 74–91 (2001).

    Article  CAS  Google Scholar 

  6. Ouchi, M., Terashima, T. & Sawamoto, M. Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem. Rev. 109, 4963–5050 (2009).

    Article  CAS  Google Scholar 

  7. Matyjaszewski, K. & Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nature Chem. 1, 276–288 (2009).

    Article  CAS  Google Scholar 

  8. van Hest, J. C. M. & Tirrell, D. A. Protein-based materials, toward a new level of structural control. Chem. Commun. 1897–1904 (2001).

  9. Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005).

    Article  CAS  Google Scholar 

  10. Badi, N. & Lutz, J.-F. Sequence control in polymer synthesis. Chem. Soc. Rev. 38, 3383–3390 (2009).

    Article  CAS  Google Scholar 

  11. Brudno, Y. & Liu, D. R. Recent progress toward the templated synthesis and directed evolution of sequence-defined synthetic polymers. Chem. Biol. 16, 265–276 (2009).

    Article  CAS  Google Scholar 

  12. Yamamoto, T. & Tezuka, Y. Topological polymer chemistry: a cyclic approach toward novel polymer properties and functions. Polym. Chem. 2, 1930–1941 (2011).

    Article  CAS  Google Scholar 

  13. Hibi, Y. et al. Design of AB divinyl “template monomers” toward alternating sequence control in metal-catalyzed living radical polymerization. Polym. Chem. 2, 341–347 (2011).

    Article  CAS  Google Scholar 

  14. Hibi, Y., Ouchi, M. & Sawamoto, M. Sequence-regulated radical polymerization with a metal-templated monomer: repetitive ABA sequence by double cyclopolymerization. Angew. Chem. Int. Ed. 50, 7434–7437 (2011).

    Article  CAS  Google Scholar 

  15. Satoh, K. et al. Sequence-regulated vinyl copolymers by metal-catalysed step-growth radical polymerization. Nature Commun. 1, 6 (2010).

    Article  Google Scholar 

  16. Seitz, M. E. et al. Nanoscale morphology in precisely sequenced poly(ethylene-co-acrylic acid) zinc ionomers. J. Am. Chem. Soc. 132, 8165–8174 (2010).

    Article  CAS  Google Scholar 

  17. Pfeifer, S., Zarafshani, Z., Badi, N. & Lutz, J.-F. Liquid-phase synthesis of block copolymers containing sequence-ordered segments. J. Am. Chem. Soc. 131, 9195–9197 (2009).

    Article  CAS  Google Scholar 

  18. Yu, T. B., Bai, J. Z. & Guan, Z. B. Cycloaddition-promoted self-assembly of a polymer into well-defined beta sheets and hierarchical nanofibrils. Angew. Chem. Int. Ed. 48, 1097–1101 (2009).

    Article  CAS  Google Scholar 

  19. Li, J., Stayshich, R. M. & Meyer, T. Y. Exploiting sequence to control the hydrolysis behavior of biodegradable PLGA copolymers. J. Am. Chem. Soc. 133, 6910–6913 (2011).

    Article  CAS  Google Scholar 

  20. Thomas, C. M. & Lutz, J.-F. Precision synthesis of biodegradable polymers. Angew. Chem. Int. Ed. 50, 9244–9246 (2011).

    Article  CAS  Google Scholar 

  21. Tong, X., Guo, B.-h. & Huang, Y. Toward the synthesis of sequence-controlled vinyl copolymers. Chem. Commun. 47, 1455–1457 (2011).

    Article  CAS  Google Scholar 

  22. Datta, B. & Schuster, G. B. DNA-directed synthesis of aniline and 4-aminobiphenyl oligomers: programmed transfer of sequence information to a conjoined polymer nanowire. J. Am. Chem. Soc. 130, 2965–2973 (2008).

    Article  CAS  Google Scholar 

  23. Lin, N.-T. et al. From polynorbornene to the complementary polynorbornene by replication. Angew. Chem. Int. Ed. 46, 4481–4485 (2007).

    Article  CAS  Google Scholar 

  24. Lo, P. K. & Sleiman, H. F. Nucleobase-templated polymerization: copying the chain length and polydispersity of living polymers into conjugated polymers. J. Am. Chem. Soc. 131, 4182–4183 (2009).

    Article  CAS  Google Scholar 

  25. Ida, S., Terashima, T., Ouchi, M. & Sawamoto, M. Selective radical addition with a designed heterobifunctional halide: a primary study toward sequence-controlled polymerization upon template effect. J. Am. Chem. Soc. 131, 10808–10809 (2009).

    Article  CAS  Google Scholar 

  26. Ida, S., Ouchi, M. & Sawamoto, M. Template-assisted selective radical addition toward sequence-regulated polymerization: lariat capture of target monomer by template initiator. J. Am. Chem. Soc. 132, 14748–14750 (2010).

    Article  CAS  Google Scholar 

  27. Ida, S., Terashima, T., Ouchi, M. & Sawamoto, M. Selective single monomer addition in living cationic polymerization: sequential double end-functionalization in combination with capping agent. J. Polym. Sci. A 48, 3375–3381 (2010).

    Article  CAS  Google Scholar 

  28. Pfeifer, S. & Lutz, J.-F. A facile procedure for controlling monomer sequence distribution in radical chain polymerizations. J. Am. Chem. Soc. 129, 9542–9543 (2007).

    Article  CAS  Google Scholar 

  29. Pfeifer, S. & Lutz, J.-F. Development of a library of N-substituted maleimides for the local functionalization of linear polymer chains. Chem. Eur. J. 14, 10949–10957 (2008).

    Article  CAS  Google Scholar 

  30. Lutz, J.-F., Schmidt, B. V. K. J. & Pfeifer, S. Tailored polymer microstructures prepared by atom transfer radical copolymerization of styrene and N-substituted maleimides. Macromol. Rapid Commun. 32, 127–135 (2011).

    Article  CAS  Google Scholar 

  31. Kramer, J. W. et al. Polymerization of enantiopure monomers using syndiospecific catalysts: a new approach to sequence control in polymer synthesis. J. Am. Chem. Soc. 131, 16042–16044 (2009).

    Article  CAS  Google Scholar 

  32. Lutz, J.-F. Polymer chemistry: a controlled sequence of events. Nature Chem. 2, 84–85 (2010).

    Article  CAS  Google Scholar 

  33. Satoh, K., Matsuda, M., Nagai, K. & Kamigaito, M. AAB-sequence living radical chain copolymerization of naturally occurring limonene with maleimide: an end-to-end sequence-regulated copolymer. J. Am. Chem. Soc. 132, 10003–10005 (2010).

    Article  CAS  Google Scholar 

  34. Connor, R. E. & Tirrell, D. A. Non-canonical amino acids in protein polymer design. Polym. Rev. 47, 9–28 (2007).

    Article  CAS  Google Scholar 

  35. Hill, D. J. et al. A field guide to foldamers. Chem. Rev. 101, 3893–4012 (2001).

    Article  CAS  Google Scholar 

  36. Guichard, G. & Huc, I. Synthetic foldamers. Chem. Commun. 47, 5933–5941 (2011).

    Article  CAS  Google Scholar 

  37. Hecht, S. Construction with macromolecules. Mater. Today 8, 48–55 (2005).

    Article  CAS  Google Scholar 

  38. Ghosh, S. & Ramakrishnan, S. Aromatic donor–acceptor charge-transfer and metal-ion-complexation-assisted folding of a synthetic polymer. Angew. Chem. Int. Ed. 43, 3264–3268 (2004).

    Article  CAS  Google Scholar 

  39. van Gorp, J. J., Vekemans, J. & Meijer, E. W. Facile synthesis of a chiral polymeric helix; folding by intramolecular hydrogen bonding. Chem. Commun. 60–61 (2004).

  40. Kumaki, J. et al. Molecular weight recognition in the multiple-stranded helix of a synthetic polymer without specific monomer–monomer interaction. J. Am. Chem. Soc. 130, 6373–6380 (2008).

    Article  CAS  Google Scholar 

  41. Yashima, E. et al. Helical polymers: synthesis, structures, and functions. Chem. Rev. 109, 6102–6211 (2009).

    Article  CAS  Google Scholar 

  42. Cornelissen, J. et al. β-helical polymers from isocyanopeptides. Science 293, 676–680 (2001).

    Article  CAS  Google Scholar 

  43. Harth, E. et al. A facile approach to architecturally defined nanoparticles via intramolecular chain collapse. J. Am. Chem. Soc. 124, 8653–8660 (2002).

    Article  CAS  Google Scholar 

  44. Zhou, Y., Jiang, K., Song, Q. & Liu, S. Thermo-induced formation of unimolecular and multimolecular micelles from novel double hydrophilic multiblock copolymers of N,N-dimethylacrylamide and N-isopropylacrylamide. Langmuir 23, 13076–13084 (2007).

    Article  CAS  Google Scholar 

  45. Foster, E. J., Berda, E. B. & Meijer, E. W. Metastable supramolecular polymer nanoparticles via intramolecular collapse of single polymer chains. J. Am. Chem. Soc. 131, 6964–6966 (2009).

    Article  CAS  Google Scholar 

  46. Mes, T., van der Weegen, R., Palmans, A. R. A. & Meijer, E. W. Single-chain polymeric nanoparticles by stepwise folding. Angew. Chem. Int. Ed. 50, 5085–5089 (2011).

    Article  CAS  Google Scholar 

  47. Schmidt, B. V. K. J., Fechler, N., Falkenhagen, J. & Lutz, J.-F. Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nature Chem. 3, 234–238 (2011).

    Article  CAS  Google Scholar 

  48. Terashima, T. et al. Single-chain folding of polymers for catalytic systems in water. J. Am. Chem. Soc. 133, 4742–4745 (2011).

    Article  CAS  Google Scholar 

  49. Giuseppone, N. & Lutz, J.-F. Materials chemistry: catalytic accordions. Nature 473, 40–41 (2011).

    Article  CAS  Google Scholar 

  50. Granick, S. et al. Single-molecule methods in polymer science. J. Polym. Sci. B 48, 2542–2543 (2010).

    Article  CAS  Google Scholar 

  51. Kumaki, J., Nishikawa, Y. & Hashimoto, T. Visualization of single-chain conformations of a synthetic polymer with atomic force microscopy. J. Am. Chem. Soc. 118, 3321–3322 (1996).

    Article  CAS  Google Scholar 

  52. Gromer, A., Rawiso, M. & Maaloum, M. Visualization of hydrophobic polyelectrolytes using atomic force microscopy in solution. Langmuir 24, 8950–8953 (2008).

    Article  CAS  Google Scholar 

  53. Kiriy, A. et al. Cascade of coil-globule conformational transitions of single flexible polyelectrolyte molecules in poor solvent. J. Am. Chem. Soc. 124, 13454–13462 (2002).

    Article  CAS  Google Scholar 

  54. Zhang, B. Z. et al. The largest synthetic structure with molecular precision: towards a molecular object. Angew. Chem. Int. Ed. 50, 737–740 (2011).

    Article  CAS  Google Scholar 

  55. Sheiko, S. S., Sumerlin, B. S. & Matyjaszewski, K. Cylindrical molecular brushes: synthesis, characterization, and properties. Prog. Polym. Sci. 33, 759–785 (2008).

    Article  CAS  Google Scholar 

  56. Schappacher, M. & Deffieux, A. Imaging of catenated, figure-of-eight, and trefoil knot polymer rings. Angew. Chem. Int. Ed. 48, 5930–5933 (2009).

    Article  CAS  Google Scholar 

  57. Schappacher, M. & Deffieux, A. Synthesis of macrocyclic copolymer brushes and their self-assembly into supramolecular tubes. Science 319, 1512–1515 (2008).

    Article  CAS  Google Scholar 

  58. Sheiko, S. S. et al. Adsorption-induced scission of carbon-carbon bonds. Nature 440, 191–194 (2006).

    Article  CAS  Google Scholar 

  59. Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H. E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Article  CAS  Google Scholar 

  60. Shi, W. Q. et al. Closed mechanoelectrochemical cycles of individual single-chain macromolecular motors by AFM. Angew. Chem. Int. Ed. 46, 8400–8404 (2007).

    Article  CAS  Google Scholar 

  61. Barner, J., Al-Hellani, R., Schluter, A. D. & Rabe, J. P. Synthesis with single macromolecules: covalent connection between a neutral dendronized polymer and polyelectrolyte chains as well as graphene edges. Macromol. Rapid Commun. 31, 362–367 (2010).

    Article  CAS  Google Scholar 

  62. Barbara, P. F., Gesquiere, A. J., Park, S.-J. & Lee, Y. J. Single-molecule spectroscopy of conjugated polymers. Acc. Chem. Res. 38, 602–610 (2005).

    Article  CAS  Google Scholar 

  63. Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    Article  CAS  Google Scholar 

  64. Okawa, Y. et al. Chemical wiring and soldering toward all-molecule electronic circuitry. J. Am. Chem. Soc. 133, 8227–8233 (2011).

    Article  CAS  Google Scholar 

  65. Sykora, M., Maxwell, K. A., DeSimone, J. M. & Meyer, T. J. Mimicking the antenna-electron transfer properties of photosynthesis. Proc. Natl Acad. Sci. USA 97, 7687–7691 (2000).

    Article  CAS  Google Scholar 

  66. Shimakoshi, H. et al. Photocatalytic function of a polymer-supported B-12 complex with a ruthenium trisbipyridine photosensitizer. Chem. Commun. 47, 6548–6550 (2011).

    Article  CAS  Google Scholar 

  67. Alstrum-Acevedo, J. H., Brennaman, M. K. & Meyer, T. J. Chemical approaches to artificial photosynthesis. 2. Inorg. Chem. 44, 6802–6827 (2005).

    Article  CAS  Google Scholar 

  68. Dickerson, T. J., Reed, N. N. & Janda, K. D. Soluble polymers as scaffolds for recoverable catalysts and reagents. Chem. Rev. 102, 3325–3344 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.-F.L. thanks the CNRS, the University of Strasbourg, the International Center for Frontier Research in Chemistry (FRC, Strasbourg) and the European Research Council (Project SEQUENCES – ERC grant agreement no. 258593) for financial support. M.S. and M.O. thank the Ministry of Education, Culture, Sports, Science and Technology, Japan, for financial support through a Grant-in-Aid for Creative Science Research (18GS0209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-François Lutz or Mitsuo Sawamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouchi, M., Badi, N., Lutz, JF. et al. Single-chain technology using discrete synthetic macromolecules. Nature Chem 3, 917–924 (2011). https://doi.org/10.1038/nchem.1175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing