Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Opportunities in chemistry and materials science for topological insulators and their nanostructures

Abstract

Electrical charges on the boundaries of topological insulators favour forward motion over back-scattering at impurities, producing low-dissipation, metallic states that exist up to room temperature in ambient conditions. These states have the promise to impact a broad range of applications from electronics to the production of energy, which is one reason why topological insulators have become the rising star in condensed-matter physics. There are many challenges in the processing of these exotic materials to use the metallic states in functional devices, and they present great opportunities for the chemistry and materials science research communities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Exotic electronic states in topological insulators.
Figure 2: Evidence of topological insulators.
Figure 3: Nanostructures of topological insulators.
Figure 4: Heterostructures of topological insulators.

References

  1. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  CAS  Google Scholar 

  2. Nomura, K., Koshino, M. & Ryu, S. Topological delocalization of two-dimensional massless Dirac fermions. Phys. Rev. Lett. 99, 146806 (2007).

    Article  Google Scholar 

  3. Murakami, S., Nagaosa, N. & Zhang, S.-C. Spin-Hall insulator. Phys. Rev. Lett. 93, 156804 (2004).

    Article  Google Scholar 

  4. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  CAS  Google Scholar 

  5. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  CAS  Google Scholar 

  6. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  Google Scholar 

  7. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  Google Scholar 

  8. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    Article  Google Scholar 

  9. Roy, R. Z2 classification of quantum spin Hall systems: An approach using time-reversal invariance. Phys. Rev. B 79, 195321 (2009).

    Article  Google Scholar 

  10. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  Google Scholar 

  11. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article  CAS  Google Scholar 

  12. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  13. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, 398–402 (2009).

    Article  CAS  Google Scholar 

  14. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178–181 (2009).

    Article  CAS  Google Scholar 

  15. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    Article  CAS  Google Scholar 

  16. Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009).

    Article  CAS  Google Scholar 

  17. Zhang, T. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 103, 266803 (2009).

    Article  Google Scholar 

  18. Alpichshev, Z. et al. STM imaging of electronic waves on the surface of Bi2Te3: Topologically protected surface states and hexagonal warping effects. Phys. Rev. Lett. 104, 016401 (2010).

    Article  Google Scholar 

  19. Seo, J. et al. Transmission of topological surface states through surface barriers. Nature 466, 343–346 (2010).

    Article  CAS  Google Scholar 

  20. Gomes, K. K. et al. Quantum imaging of topologically unpaired spin-polarized Dirac fermions. Preprint available at http://arxiv.org/abs/0909.0921 (2009).

  21. Yan, B. et al. Theoretical prediction of topological insulators in thallium-based III-V-VI2 ternary chalcogenides. Europhys. Lett. 90, 37002 (2010).

    Article  Google Scholar 

  22. Lin, H. et al. Single-Dirac-cone topological surface states in the TlBiSe2 class of topological semiconductors. Phys. Rev. Lett. 105, 036404 (2010).

    Article  Google Scholar 

  23. Chadov, S. et al. Tunable multifunctional topological insulators in ternary heusler compounds. Nature Mater. 9, 541–545 (2010).

    Article  CAS  Google Scholar 

  24. Lin, H. et al. Half-heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nature Mater. 9, 546–549 (2010).

    Article  CAS  Google Scholar 

  25. Peng, H. et al. Aharonov-Bohm interference in topological insulator nanoribbons. Nature Mater. 9, 225–229 (2010).

    Article  CAS  Google Scholar 

  26. Bachtold, A. et al. Aharonov-Bohm oscillations in carbon nanotubes. Nature 397, 673–675 (1999).

    Article  CAS  Google Scholar 

  27. Xiu, F. et al. Manipulating surface states in topological insulator nanoribbons. Nature Nanotech. 6, 216–221 (2011).

    Article  CAS  Google Scholar 

  28. Analytis, J. G. et al. Two-dimensional surface state in the quantum limit of a topological insulator. Nature Phys. 6, 960–964 (2010).

    Article  CAS  Google Scholar 

  29. Qu, D.-X., Hor, Y. S., Xiong, J., Cava, R. J. & Ong, N. P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3 . Science 329, 821–824 (2010).

    Article  CAS  Google Scholar 

  30. Hor, Y. S. et al. P-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B 79, 195208 (2009).

    Article  Google Scholar 

  31. Analytis, J. G. et al. Bulk fermi surface coexistence with Dirac surface state in Bi2Se3: A comparison of photoemission and Shubnikov-de Haas measurements. Phys. Rev. B 81, 205407 (2010).

    Article  Google Scholar 

  32. Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    Article  CAS  Google Scholar 

  33. Kong, D. et al. Topological insulator nanowires and nanoribbons. Nano Lett. 10, 329–333 (2009).

    Article  Google Scholar 

  34. Cha, J. J. et al. Magnetic doping and Kondo effect in Bi2Se3 nanoribbons. Nano Lett. 10, 1076–1081 (2010).

    Article  CAS  Google Scholar 

  35. Kong, D. et al. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 10, 2245–2250 (2010).

    Article  CAS  Google Scholar 

  36. Dang, W., Peng, H., Li, H., Wang, P. & Liu, Z. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 10, 2870–2876 (2010).

    Article  CAS  Google Scholar 

  37. Venkatasubramanian, R., Siivola, E., Colpitts, T. & O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).

    Article  CAS  Google Scholar 

  38. Zhang, Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nature Phys. 6, 584–588 (2010).

    Article  Google Scholar 

  39. Li, Y. Y. et al. Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit. Adv. Mater. 22, 4002–4007 (2010).

    Article  CAS  Google Scholar 

  40. Teweldebrhan, D., Goyal, V. & Balandin, A. A. Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett. 10, 1209–1218 (2010).

    Article  CAS  Google Scholar 

  41. Ding, Z., Viculis, L., Nakawatase, J. & Kaner, R. B. Intercalation and solution processing of bismuth telluride and bismuth selenide. Adv. Mater. 13, 797–800 (2001).

    Article  CAS  Google Scholar 

  42. Hong, S. S. et al. Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. Nano Lett. 10, 3118–3122 (2010).

    Article  CAS  Google Scholar 

  43. Bando, H. et al. The time-dependent process of oxidation of the surface of Bi2Te3 studied by X-ray photoelectron spectroscopy. J. Phys. Condens. Matter 12, 5607 (2000).

    Article  CAS  Google Scholar 

  44. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  Google Scholar 

  45. Garate, I. & Franz, M. Inverse spin-galvanic effect in the interface between a topological insulator and a ferromagnet. Phys. Rev. Lett. 104, 146802 (2010).

    Article  Google Scholar 

  46. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  47. Chasmar, R. P. & Stratton, R. The thermoelectric figure of merit and its relation to thermoelectric generators. J. Electron. Control 7, 52–72 (1959).

    Article  CAS  Google Scholar 

  48. Xu, S.-Y. et al. Discovery of several large families of topological insulator classes with backscattering-suppressed spin-polarized single-Dirac-cone. Preprint available at http://arxiv.org/abs/arXiv:1007.5111 (2010).

  49. Chen, H., Zhu, W., Xiao, D. & Zhang, Z. CO oxidation facilitated by robust surface states on Au-covered topological insulators. Phys. Rev. Lett. 107, 056804 (2011).

    Article  Google Scholar 

  50. Qi, X.-L. & Zhang, S.-C. The quantum spin Hall effect and topological insulators. Phys. Today 63, 33–38 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We have benefited from discussions with Shou-Cheng Zhang and Zhong Wang to improve this Perspective. Our research on topological insulators is supported by the Keck Foundation and DARPA MESO project (no. N66001-11-1-4105). Y. C. acknowledges the support from King Abdullah University of Science and Technology (KAUST) Investigator Award (no. KUS-l1-001-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kong, D., Cui, Y. Opportunities in chemistry and materials science for topological insulators and their nanostructures. Nature Chem 3, 845–849 (2011). https://doi.org/10.1038/nchem.1171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing