Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In situ quantitative imaging of cellular lipids using molecular sensors


Membrane lipids are dynamic molecules that play important roles in cell signalling and regulation, but an in situ imaging method for quantitatively tracking lipids in living cells is lacking at present. Here, we report a new chemical method of quantitative lipid imaging using sensors engineered by labelling proteins with an environmentally sensitive fluorophore. A prototype sensor for phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2)—a key signalling lipid in diverse cellular processes—was generated by covalently attaching a single 2-dimethylamino-6-acyl-naphthalene group to the N-terminal α-helix of the engineered epsin1 ENTH domain, a protein that selectively binds PtdIns(4,5)P2. The sensor allows robust and sensitive in situ quantitative imaging in mammalian cells, providing new insight into the spatiotemporal dynamics and fluctuation of this key signalling lipid. Application of the sensor to immune cells reveals the presence of a local threshold PtdIns(4,5)P2 concentration required for triggering phagocytosis. This sensor strategy is generally applicable to in situ quantification of other cellular lipids.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure and spectral properties of the PtdIns(4,5)P2 sensor, DAN–eENTH.
Figure 2: In vitro PtdIns(4,5)P2 calibration curves of DAN–eENTH.
Figure 3: In situ quantification of PtdIns(4,5)P2 in a representative NIH 3T3 cell by DAN–eENTH.
Figure 4: Monitoring PtdIns(4,5)P2 decrease in NIH 3T3 cells using a rapamycin-induced PtdIns(4,5)P2 depletion system.
Figure 5: In situ quantification of PtdIns(4,5)P2 in immune cells, macrophages, during phagocytosis (cell engulfing).


  1. Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell. Biol. 9, 139–150 (2008).

    CAS  Article  Google Scholar 

  2. Cho, W. Building signaling complexes at the membrane. Sci STKE 2006, pe7 (2006).

    PubMed  Google Scholar 

  3. Wymann, M. P. & Schneiter, R. Lipid signalling in disease. Nat. Rev. Mol. Cell. Biol. 9, 162–176 (2008).

    CAS  Article  Google Scholar 

  4. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell. Biol. 9, 112–124 (2008).

    CAS  Article  Google Scholar 

  5. Cho, W. & Stahelin, R. V. Membrane–protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol. Struct. 34, 119–151 (2005).

    CAS  Article  Google Scholar 

  6. Lemmon, M. A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell. Biol. 9, 99–111 (2008).

    CAS  Article  Google Scholar 

  7. Varnai, P. & Balla, T. Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochim. Biophys. Acta 1761, 957–967 (2006).

    CAS  Article  Google Scholar 

  8. Downes, C. P., Gray, A. & Lucocq, J. M. Probing phosphoinositide functions in signaling and membrane trafficking. Trends Cell. Biol. 15, 259–268 (2005).

    CAS  Article  Google Scholar 

  9. Irvine, R. Inositol lipids: to PHix or not to PHix? Curr. Biol. 14, R308–310 (2004).

    CAS  Article  Google Scholar 

  10. Han, X. & Gross, R. W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J. Lipid Res. 44, 1071–1079 (2003).

    CAS  Article  Google Scholar 

  11. van Meer, G. Cellular lipidomics. EMBO J. 24, 3159–3165 (2005).

    CAS  Article  Google Scholar 

  12. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    CAS  Article  Google Scholar 

  13. McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605–611 (2005).

    CAS  Article  Google Scholar 

  14. McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP(2) and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175 (2002).

    CAS  Article  Google Scholar 

  15. van Rheenen, J., Achame, E. M., Janssen, H., Calafat, J. & Jalink, K. PIP2 signaling in lipid domains: a critical re-evaluation. EMBO J. 24, 1664–1673 (2005).

    CAS  Article  Google Scholar 

  16. Hilgemann, D. W. Local PIP(2) signals: when, where, and how? Pflugers Arch. 455, 55–67 (2007).

    CAS  Article  Google Scholar 

  17. Botelho, R. J. et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell. Biol. 151, 1353–1368 (2000).

    CAS  Article  Google Scholar 

  18. Garrenton, L. S., Stefan, C. J., McMurray, M. A., Emr, S. D. & Thorner, J. Pheromone-induced anisotropy in yeast plasma membrane phosphatidylinositol-4,5-bisphosphate distribution is required for MAPK signaling. Proc. Natl Acad. Sci. USA 107, 11805–11810 (2010).

    CAS  Article  Google Scholar 

  19. Itoh, T. et al. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291, 1047–1051 (2001).

    CAS  Article  Google Scholar 

  20. Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    CAS  Article  Google Scholar 

  21. Stahelin, R. V. et al. Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains. J. Biol. Chem. 278, 28993–28999 (2003).

    CAS  Article  Google Scholar 

  22. Weber, G. & Farris, F. J. Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18, 3075–3078 (1979).

    CAS  Article  Google Scholar 

  23. Terebiznik, M. R. et al. Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Nature Cell Biol. 4, 766–773 (2002).

    CAS  Article  Google Scholar 

  24. Ruderman, N. B., Kapeller, R., White, M. F. & Cantley, L. C. Activation of phosphatidylinositol 3-kinase by insulin. Proc. Natl Acad. Sci. USA 87, 1411–1415 (1990).

    CAS  Article  Google Scholar 

  25. Rhee, S. G. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281–312 (2001).

    CAS  Article  Google Scholar 

  26. Inoue, T., Heo, W. D., Grimley, J. S., Wandless, T. J. & Meyer, T. An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat. Methods 2, 415–418 (2005).

    CAS  Article  Google Scholar 

  27. Varnai, P., Thyagarajan, B., Rohacs, T. & Balla, T. Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J. Cell. Biol. 175, 377–382 (2006).

    CAS  Article  Google Scholar 

  28. Swanson, J. A. Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell. Biol. 9, 639–649 (2008).

    CAS  Article  Google Scholar 

  29. Grinstein, S. Imaging signal transduction during phagocytosis: phospholipids, surface charge, and electrostatic interactions. Am. J. Physiol. Cell. Physiol. 299, C876–C881 (2010).

    CAS  Article  Google Scholar 

  30. Stahelin, R. V. et al. Mechanism of diacylglycerol-induced membrane targeting and activation of protein kinase Cδ. J. Biol. Chem. 279, 29501–29512 (2004).

    CAS  Article  Google Scholar 

  31. Manna, D. et al. Differential roles of phosphatidylserine, PtdIns(4,5)P2, and PtdIns(3,4,5)P3 in plasma membrane targeting of C2 domains. Molecular dynamics simulation, membrane binding, and cell translocation studies of the PKCα C2 domain. J. Biol. Chem. 283, 26047–26058 (2008).

    CAS  Article  Google Scholar 

  32. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

Download references


This study was supported by the National Institutes of Health (grant no. GM68849). It was also supported in part by the Chicago Biomedical Consortium with support from the Searl Funds at the Chicago Community Trust. The authors thank I. Kim, S.-Y. Kim, S. Bhattacharjee, Y. Kanaho and L.-W. Gong for technical assistance in phagocytosis and membrane trafficking experiments, and T. Balla for the generous gift of the PtdIns(4,5)-depletion system.

Author information

Authors and Affiliations



W.C. and Y.Y. conceived the lipid sensor strategy. W.C. supervised the project and Y.Y. designed and prepared the sensor. P.J.L. and S.K. performed all microscopy imaging and image analysis. Y.Y. and P.J.L. contributed equally to this work.

Corresponding author

Correspondence to Wonhwa Cho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1570 kb)

Supplementary information

Supplementary Movie S1 (AVI 1026 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yoon, Y., Lee, P., Kurilova, S. et al. In situ quantitative imaging of cellular lipids using molecular sensors. Nature Chem 3, 868–874 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing