Abstract
Solar fuel production often starts with the energy from light being absorbed by an assembly of molecules; this electronic excitation is subsequently transferred to a suitable acceptor. For example, in photosynthesis, antenna complexes capture sunlight and direct the energy to reaction centres that then carry out the associated chemistry. In this Review, we describe the principles learned from studies of various natural antenna complexes and suggest how to elucidate strategies for designing light-harvesting systems. We envisage that such systems will be used for solar fuel production, to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control, or to transfer excitons over long distances. Also described are the notable properties of light-harvesting chromophores, spatial-energetic landscapes, the roles of excitonic states and quantum coherence, as well as how antennas are regulated and photoprotected.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
Larkum, A. W. D. Limitations and prospects of natural photosynthesis for bioenergy production. Curr. Opin. Biotechnol. 21, 271–276 (2010).
Blankenship, R. E. et al. Comparing photosynthetic efficienciencies and recognizing the potential for improvement. Science 332, 805–809 (2011).
Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).
Remacle, F., Speiser, S. & Levine, R. D. Intermolecular and intramolecular logic gates. J. Phys. Chem. B 105, 5589–5591 (2001).
Credi, A. Molecules that make decisions. Angew. Chem. Int. Ed. 46, 5472–5475 (2007).
Szacilowski, K. Digital information processing in molecular systems. Chem. Rev. 108, 3481–3548 (2008).
Green, B. R. & Parson, W. W. (eds) Light-Harvesting Antennas in Photosynthesis (Kluwer, Dordrecht, 2003).
Gust, D., Moore, T. A. & Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890–1898 (2009).
Wasielewski, M. R. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910–1921 (2009).
Guldi, D. M. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem. Soc. Rev. 31, 22–36 (2002).
Ball, P. The dawn of quantum biology. Nature 474, 272–274 (2011).
Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Blackwell, 2002).
Ke, B. Photosynthesis: Photobiochemistry and Photobiophysics (Advances in Photosynthesis series Vol. 10, Kluwer Academic, 2001).
van Grondelle, R., Dekker, J. P., Gillbro, T. & Sundström, V. Energy transfer and trapping in photosynthesis. Biochim. Biophys. Acta 1187, 1–65 (1994).
van Amerongen, H., Valkunas, L. & van Grondelle, R. Photosynthetic Excitons (World Scientific, 2000).
Sundström, V., Pullerits, T. & van Grondelle, R. Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J. Phys. Chem. B 103, 2327–2346 (1999).
Grossman, A. R., Bhaya, D., Apt, K. E. & Kehoe, D. M. Light-harvesting complexes in oxygenic photosynthesis: Diversity, control, and evolution. Annu. Rev. Genetics 29, 231–288 (1995).
Cheng, Y. C. & Fleming, G. R. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60, 241–262 (2009).
Cogdell, R. J., Gall, A. & Köhler, J. The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Quarterly Rev. Biophys. 39, 227–324 (2006).
Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003).
Olaya-Castro, A. & Scholes, G. D. Energy transfer from Förster-Dexter theory to quantum coherent light-harvesting. Int. Rev. Phys. Chem. 30, 49–77 (2011).
Beljonne, D., Curutchet, C., Scholes, G. D. & Silbey, R. Beyond Förster resonance energy transfer in biological and nanoscale systems. J. Phys. Chem. B 113, 6583–6599 (2009).
Braslavsky, S. E. et al. Pitfalls and limitations in the practical use of Förster's theory of resonance energy transfer. Photochem. Photobiol. Sci. 7, 1444–1448 (2008).
Clegg, R. M. Fluorescence resonance energy transfer. Curr. Opin. Biotech. 6, 103–110 (1995).
Scholes, G. D. & Fleming, G. R. Energy transfer in photosynthesis. Adv. Chem. Phys. 132, 57–129 (2005).
Scholes, G. D. & Fleming, G. R. On the mechanism of light-harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer. J. Phys. Chem. B 104, 1854–1868 (2000).
Van Grondelle, R. & Novoderezhkin, V. I. Energy transfer in photosynthesis: experimental insights and quantitative models. Phys. Chem. Chem. Phys. 8, 793–807 (2006).
Novoderezhkin, V. & van Grondelle, R. Physical origins and models of energy transfer in photosynthetic light-harvesting. Phys. Chem. Chem. Phys. 12, 7352–7365 (2010).
Sener, M. K., Olsen, J. D., Hunter, C. N. & Schulten, K. Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc. Natl Acad. Sci. USA 104, 15723–15728 (2007).
Renger, T. Theory of excitation energy transfer: from structure to function. Photosynth. Res. 102, 471–485 (2009).
Renger, T. & Schodder, E. Primary photophysical processes in photosystem II: Bridging the gap between crystal structure and optical spectra. ChemPhysChem 11, 1141–1153 (2010).
Swager, T. M. The molecular wire approach to sensory signal amplification. Acc. Chem. Res. 31, 201–207 (1998).
Andrews, D. L. & Bradshaw, D. S. Optically nonlinear energy transfer in light-harvesting dendrimers. J. Chem. Phys. 121, 2445–2454 (2004).
Singh-Rachford, T. N. & Castellano, F. N. Photon upconversion based on sensitized triplet-triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010).
Overmann, J., Cypionka, H. & Pfennig, N. An extremely low-light adapted phototrophic sulfur bacterium from the Black Sea. Limnol. Oceanogr. 37, 150–155 (1992).
Fassioli, F., Olaya-Castro, A., Scheuring, S., Sturgis, J. N. & Johnson, N. F. Energy transfer in light-adapted photosynthetic membranes: From active to saturated photosynthesis. Biophys. J. 97, 2464–2473 (2009).
Krueger, B. P., Scholes, G. D. & Fleming, G. R. Calculation of couplings and energy transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J. Phys. Chem. B 102, 5378–5386 (1998).
Björn, L. O., Papageorgiou, G. C., Blankenship, R. E. & Govindjee. A viewpoint: Why chlorophyll a? Photosynth. Res. 99, 85–98 (2009).
Tretiak, S. & Mukamel, S. Density matrix analysis and simulation of electronic excitations in conjugated and aggregated molecules. Chem. Rev. 102, 3171–3212 (2002).
Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nature Mater. 5, 683–696 (2006).
Tretiak, S., Chernyak, V. & Mukamel, S. Chemical bonding and size scaling of nonlinear polarizabilities of conjugated polymers. Phys. Rev. Lett. 77, 4656–4659 (1996).
Marder, S. R. et al. A unified description of the linear and nonlinear polarization in organic polymethine dyes. Science 265, 632–635 (1994).
Birks, J. B. in Organic Molecular Photophysics Vol. 1 (ed. J. B. Birks) Ch. 1, 1–55 (Wiley, 1973).
Platt, J. R. Classification of the spectra of cata-condensed hydrocarbons. J. Chem. Phys. 17, 484–495 (1949).
Law, K. Y. Squaraine chemistry. Absorption, fluorescence emission, and photophysics of unsymmetrical squaraines. J. Phys. Chem. 99, 9818–9824 (1995).
Duysens, L. N. M. Transfer of light energy within the pigment systems present in photosynthesizing cells. Nature 168, 548–550 (1951).
Blumen, A. & Manz, J. On the concentration and time dependence of the energy transfer to randomly distributed acceptors. J. Chem. Phys. 71, 4694–4702 (1979).
Den Hollander, W. T. F., Bakker, J. G. C. & van Grondelle, R. Trapping, loss and annihilation of excitations in a photosynthetic system. 1. Theoretical aspects. Biochim. Biophys. Acta 725, 492–507 (1983).
Anthanasopoulos, S., Hennebicq, E., Beljonne, D. & Walker, A. B. Trap limited transport in conjugated polymers. J. Phys. Chem. C 112, 11532–11538 (2008).
Livingston, R. Intermolecular transfer of electronic excitation. J. Phys. Chem. 61, 860–864 (1957).
Beddard, G. S. & Porter, G. Concentration quenching in chlorophyll. Nature 260, 366–367 (1976).
Scholes, G. D. & Ghiggino, K. P. Electronic interactions and interchromophore excitation transfer. J. Phys. Chem. 98, 4580–4590 (1994).
Samuel, I. D. W. et al. The efficiency and time-dependence of luminescence from poly(p-phenylene vinylene) and derivatives. Chem. Phys. Lett. 213, 472–478 (1993).
Brédas, J. L., Beljonne, D., Coropceanu, V. & Cornil, J. Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: A molecular picture. Chem. Rev. 104, 4971–5003 (2004).
Calzaferri, G., Huber, S., Maas, H. & Minkowski, C. Host-guest antenna materials. Angew. Chem. Int. Ed. 42, 3732–3758 (2003).
Fetisova, Z. G., Freiberg, A. M. & Timpmann, K. E. Long-range molecular order as an efficient strategy for light harvesting in photosynthesis. Nature 334, 633–634 (1988).
Scholak, T., de Melo, F., Wellens, T., Mintert, F. & Buchleitner, A. Efficient and coherent excitation transfer across disordered molecular networks. Phys. Rev. E 83, 021912 (2011).
Schlau-Cohen, G. S. et al. Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy. J. Phys. Chem. B 113, 15352–1536, (2009).
Calhoun, T. R. et al. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J. Phys. Chem. B 113, 16291–16295 (2009).
Müh, F., Madjet, M. E. & Renger, T. Structure-based identification of energy sinks in plant light-harvesting complex II. J. Phys. Chem. B 114, 13517–13535 (2010).
Scheuring, A. & Sturgis, J. N. Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery Photosynth. Res. 102, 197–211 (2009).
Bahatyrova, S. et al. The native architecture of a photosynthetic membrane. Nature 430, 1058–1062 (2004).
Andrews, D. L. & Rodriguez, J. Resonance energy transfer: Spectral overlap, efficiency, and direction. J. Chem. Phys. 127, 084509 (2007).
Shortreed, M. R. et al. Directed energy transfer funnels in dendrimeric antenna supermolecules. J. Phys. Chem. B 101, 6318–6322 (1997).
Balzani, V. & Scandola, F. Supramolecular Photochemistry (Ellis Horwood, 1991).
MacColl, R. Cyanobacterial phycobilisomes. J. Struct. Biol. 124, 311–334 (1998).
Arteni, A. A., Ajlani, G. & Boekema, E. J. Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochim. Biophys. Acta 1787, 272–279 (2009).
Su, H.-N., Xie, B.-B., Zhang, X.-Y., Zhou, B.-C. & Zhang, Y.-Z. The supramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview. Photosynth. Res. 106, 73–87 (2010).
David, L., Marx, A. & Adir, N. High-resolution crystal structures of trimeric and rod phycocyanin. J. Mol. Biol. 405, 201–213 (2011).
Wen, J., Zhang, H., Gross, M. L. & Blankenship, R. E. Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Proc. Natl Acad. Sci. USA 106, 6134–6139 (2009).
Frigaard, N. U., Chew, A. G. M., Li, H., Maresca, J. A. & Bryant, D. A. Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth. Res. 78, 93–117 (2003).
Gantt, E., Edwards, M. R. & Provasoli, L. Chloroplast structure of cryptophyceae - evidence for phycobiliproteins within intrathylakoidal spaces. J. Cell Biol. 48, 280–290 (1971).
Fowler, G. J. S., Visschers, R. W., Grief, G. G., van Grondelle, R. & Hunter, C. N. Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355, 848–850 (1992).
Trissl, H.-W., Law, C. J. & Cogdell, R. J. Uphill energy transfer in LH2-containing purple bacteria at room temperature. Biochim. Biophys. Acta 1412, 149–172 (1999).
Curutchet, C. et al. Photosynthetic light-harvesting is tuned by the heterogeneous polarizable environment of the protein. J. Am. Chem. Soc. 133, 3078–3084 (2011).
Kasha, M. Energy transfer mechanisms and molecular exciton model for molecular aggregates. Radiation Research 20, 55–71 (1963).
McDermott, G. et al. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517–521 (1995).
Scholes, G. D., Gould, I. R., Cogdell, R. J. & Fleming, G. R. Ab initio molecular orbital calculations of electronic couplings in the LH2 bacterial light-harvesting complex of Rps. Acidophila. J. Phys. Chem. B 103, 2543–2553, (1999).
Koolhaas, M. et al. Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. Biochemistry 37, 4693–4698 (1998).
Scholes, G. D., Jordanides, X. J. & Fleming, G. R. Adapting the Förster theory of energy transfer for modeling dynamics in aggregated molecular assemblies. J. Phys. Chem. B 105, 1640–1651 (2001).
Sumi, H. Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J. Phys. Chem. B 103, 252–260 (1999).
Sumi, H. Bacterial photosynthesis begins with quantum-mechanical coherence. Chem. Rec. 1, 480–493 (2001).
Jang, S., Newton, M. D. & Silbey, R. J. Multichromophoric Förster resonance energy transfer from B800 to B850 in the light harvesting complex 2: Evidence for subtle energetic optimization by purple bacteria. J. Phys. Chem. B 111, 6807–6814 (2007).
Chachisvilis, M., Kühn, O., Pullerits, T. & Sundström, V. Excitons in photosynthetic purple bacteria: Wavelike motion or incoherent hopping? J. Phys. Chem. B 101, 7275–7283 (1997).
Jimenez, R., Dikshit, S. N., Bradforth, S. E. & Fleming, G. R. Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides. J. Phys. Chem. 100, 6825–6834 (1996).
Pullerits, T., Chachisvilis, M. & Sundström, V. Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J. Phys. Chem. 100, 10787–10792 (1996).
Novoderezhkin, V., Monshouwer, R. & van Grondelle, R. Exciton (de)localization in the LH2 antenna of Rhodobacter sphaeroides as revealed by relative difference absorption measurements of the LH2 antenna and the B820 subunit. J. Phys. Chem. B 103, 10540–10548 (1999).
Monshouwer, R., Abrahamsson, M., van Mourik, F. & van Grondelle, R. Superradience and exciton delocalization in bacterial photosynthetic light-harvesting systems. J. Phys. Chem. B 101, 7241–7248 (1997).
Mercer, I. P. et al. Instantaneous mapping of coherently coupled electronic transitions and energy transfers in a photosynthetic complex using angle-resolved coherent optical wave-mixing. Phys. Rev. Lett. 102, 057402 (2009).
Melkozernov, A. N., Barber, J. & Blankenship, R. E. Light harvesting in photosystem I supercomplexes. Biochem. 45, 331–345 (2006).
Gobets, B. & van Grondelle, R. Energy transfer and trapping in photosystem I. Biochim. Biophys. Acta 1507, 80–99 (2001).
Yang, M., Damjanovic, A., Vaswani, H. M. & Fleming, G. R. Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: Model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys. J. 85, 140–158 (2003).
Craig, D. P. & Walmsley, S. H. Excitons in Molecular Crystals (Benjamin, 1968).
Simpson, W. T. & Peterson, D. L. Coupling strength for resonance force transfer of electronic energy in van der Waals solids. J. Chem. Phys. 26, 588–593 (1957).
Rebentrost, P., Mohseni, M. & Aspuru-Guzik, A. Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J. Phys. Chem. B 113, 9942–9947 (2009).
Rebentrost, P., Mohseni, M., Kassal, I., S., L. & Aspuru-Guzik, A. Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009).
Plenio, M. B. & Huelga, S. F. Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008).
Rackovsky, S. & Silbey, R. Electronic energy transfer in impure solids I. Two molecules embedded in a lattice. Mol. Phys. 25, 61–72 (1973).
Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).
Collini, E. & Scholes, G. D. Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323, 369–373 (2009).
Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–648 (2010).
Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).
Calhoun, T. R. & Fleming, G. R. Quantum coherence in photosynthetic complexes. Phys. Status Solidi B 248, 833–838 (2011).
Turner, D. B., Wilk, K. E., Curmi, P. M. G. & Scholes, G. D. Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 2, 1904–1911 (2011).
Olaya-Castro, A., Lee, C. F., Olsen, F. F. & Johnson, N. F. Efficiency of energy transfer in a light-harvesting system under quantum coherence. Phys. Rev. B 78, 085115 (2008).
Fassioli, F., Nazir, A. & Olaya-Castro, A. Quantum state tuning of energy transfer in a correlated environment. J. Phys. Chem. Lett. 1, 2139–2143 (2010).
Kempe, J. Quantum random walks: An introductory overview. Contemp. Phys. 44, 307–327 (2003).
Agliari, E., Blumen, A. & Mülken, O. Dynamics of continuous-time random walks in restricted geometries. J. Phys. A 41, 445301–445321 (2008).
Fujii, K. & Yamamoto, K. Anti-zeno effect for quantum transport in disordered system. Phys. Rev. A 82, 042109 (2010).
Lunt, R. R., Benziger, J. B. & Forrest, S. R. Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors. Adv. Mater. 22, 1233–1236 (2010).
Lee, H., Cheng, Y.-C. & Fleming, G. R. Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316, 1462–1465 (2007).
Hossein-Nejad, H., Curutchet, C., Kubica, A. & Scholes, G. D. Delocalization-enhanced long-range energy transfer between cryptophyte algae PE545 antenna proteins. J. Phys. Chem. B 115, 5243–5253 (2011).
Ishizaki, A. & Fleming, G. R. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach. J. Chem. Phys. 130, 234111 (2009).
Yarkony, D. & Silbey, R. Comments on exciton phonon coupling - temperature-dependence. J. Chem. Phys. 65, 1042–1052 (1976).
Yarkony, D. R. & Silbey, R. Variational approach to exciton transport in molecular-crystals. J. Chem. Phys. 67, 5818–5827 (1977).
Jang, S., Cheng, Y.-C., Reichman, D. R. & Eaves, J. D. Theory of coherent resonance energy transfer. J. Chem. Phys. 129, 101104 (2008).
Scholes, G. D. Quantum-coherent electronic energy transfer: Did nature think of it first? J. Phys. Chem. Lett. 1, 2–8 (2010).
Ishizaki, A., Calhoun, T. R., Schlau-Cohen, G. S. & Fleming, G. R. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319–7337 (2010).
Horton, P., Ruban, A. V. & Walters, R. G. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684 (1996).
Demmig-Adams, B. & Adams, W. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 599–626 (1992).
Björkman, O. & Demmig-Adams, B. in Ecophysiology of Photosynthesis (eds Schulze, E.-D. & Caldwell, M. M.) 17–57 (Springer, 1994).
Niyogi, K. Safety valves for photosynthesis. Curr. Opin. Plant Biol. 3, 455–460 (2000).
Terazono, Y. et al. Mimicking the role of the antenna in photosynthetic photoprotection. J. Am. Chem. Soc. 133, 2916–2922 (2011).
Peterman, E., Monshouwer, R., van Stokkum, I., van Grondelle, R. & van Amerongen, H. Ultrafast singlet excitation transfer from carotenoids to chlorophylls via different pathways in light-harvesting complex II of higher plants. Chem. Phys. Lett. 264, 279–284 (1997).
Gradinaru, C., van Stokkum, I., Pascal, A., van Grondelle, R. & van Amerongen, H. Identifying the pathways of energy transfer between carotenoids and chlorophylls in LHCII and CP29. A multi-color, femtosecond pump-probe study. J. Phys. Chem. B 104, 9330–9342 (2000).
Peterman, E., Dukker, F., van Grondelle, R. & van Amerongen, H. Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Biophys. J. 69, 2670–2678 (1995).
Holt, N. E., Fleming, G. R. & Niyogi, K. Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43, 8281–8289 (2004).
Niyogi, K., Björkman, O. & Grossman, A. R. The roles of specific xanthophylls in photoprotection. Proc. Natl Acad. Sci. USA 94, 14162–14167 (1997).
Demmig-Adams, B. & Adams, W. Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta 198, 460–470 (1996).
Ahn, T. et al. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320, 794–797 (2008).
Holt, N. et al. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436 (2005).
Ruban, A. et al. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578 (2007).
Bode, S. et al. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl Acad. Sci. USA 106, 12311–12316 (2009).
Iwata, S. & Barber, J. Structure of photosystem II and molecular architecture of the oxygen-evolving centre. Curr. Opin. Struct. Biol. 14, 447–453 (2004).
Nield, J. & Barber, J. Refinement of the structural model for the Photosystem II supercomplex of higher plants. Biochim. Biophys. Acta 1757, 353–361 (2006).
Standfuss, J., Terwisscha van Scheltinga, A. C., Lamborghini, M. & Kühlbrandt, W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J. 24, 919–928 (2005).
Guskov, A. et al. Cyanobacterial photosystem II at 2.9 Å resolution and the role of quinones, lipids, channels and chloride. Nature Struct. Mol. Biol. 16, 224–342 (2009).
Scheuring, S. & Sturgis, J. N. Chromatic adaptation of photsynthetic membranes. Science 309, 484–487 (2005).
Feynman, R. P. & Hibbs, A. R. Quantum Mechanics and Path Integrals (McGraw-Hill, 1965).
Ishizaki, A. & Fleming, G. R. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl Acad. Sci. USA 106, 17255–17260 (2009).
Acknowledgements
The Natural Sciences and Engineering Research Council of Canada, DARPA (QuBE), the Engineering and Physical Sciences Research Council of the United Kingdom (grant EP/G005222/1), the Netherlands Organization for Scientific Research (NWO), the European Research Council (ERC) and the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract DE-AC02-05CH11231 and the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through Grant DE-AC03-76SF000098 are gratefully acknowledged for support of this research.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Scholes, G., Fleming, G., Olaya-Castro, A. et al. Lessons from nature about solar light harvesting. Nature Chem 3, 763–774 (2011). https://doi.org/10.1038/nchem.1145
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.1145
This article is cited by
-
Multi-step FRET systems based on discrete supramolecular assemblies
Communications Chemistry (2024)
-
Microwave analogy of Förster resonance energy transfer and effect of finite antenna length
Scientific Reports (2024)
-
Assembly of highly efficient aqueous light-harvesting system from sequence-defined peptoids for cytosolic microRNA detection
Nano Research (2024)
-
Energy transfer in N-component nanosystems enhanced by pulse-driven vibronic many-body entanglement
Scientific Reports (2023)
-
From enhanced diffusion to ultrafast ballistic motion of hybrid light–matter excitations
Nature Materials (2023)