Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale

Abstract

Although the outer surface of single-walled carbon nanotubes (atomically thin cylinders of carbon) can be involved in a wide range of chemical reactions, it is generally thought that the interior surface of nanotubes is unreactive. In this study, we show that in the presence of catalytically active atoms of rhenium inserted into nanotubes, the nanotube sidewall can be engaged in chemical reactions from the inside. Aberration-corrected high-resolution transmission electron microscopy operated at 80 keV allows visualization of the formation of nanometre-sized hollow protrusions on the nanotube sidewall at the atomic level in real time at ambient temperature. Our direct observations and theoretical modelling demonstrate that the nanoprotrusions are formed in three stages: (i) metal-assisted deformation and rupture of the nanotube sidewall, (ii) the fast formation of a metastable asymmetric nanoprotrusion with an open edge and (iii) a slow symmetrization process that leads to a stable closed nanoprotrusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transition metal–fullerene complex within carbon nanotubes.
Figure 2: Three examples of 80 kV AC-HRTEM image sequences that show the different stages of nanoprotrusion formation on SWNT.
Figure 3: Activation of the concave side of SWNT for chemical reactions.

Similar content being viewed by others

References

  1. Tasis, D., Tagmatarchis, N., Bianco, A. & Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Britz, D. A., Khlobystov, A. N., Porfyrakis, K., Ardavan, A. & Briggs, G. A. D. Chemical reactions inside single-walled carbon nano test-tubes. Chem. Commun. 37–39 (2005).

  3. Pagona, G. et al. Azafullerenes encapsulated within single-walled carbon nanotubes. J. Am Chem. Soc. 130, 6062–6063 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Koshino, M. et al. Analysis of the reactivity and selectivity of fullerene dimerization reactions at the atomic level. Nature Chem. 2, 117–124 (2010).

    Article  CAS  Google Scholar 

  5. Bandow, S., Takizawa, M., Hirahara, K., Yudasaka, M. & Iijima, S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 337, 48–54 (2001).

    Article  CAS  Google Scholar 

  6. Warner, J. H. et al. One-dimensional confined motion of single metal atoms inside double-walled carbon nanotubes. Phys. Rev. Lett. 102, 195504 (2009).

    Article  PubMed  Google Scholar 

  7. Sloan J. et al. Capillarity and silver nanowire formation observed in single-walled carbon nanotubes. Chem. Commun. 699–700 (1999).

  8. Chamberlain, T. W., Gimenez-Lopez, M. C. & Khlobystov A. N. Carbon Nanotubes (eds Guldi, D. M. & Martín, N.) Ch. 12 (Wiley, 2010).

    Google Scholar 

  9. Hernandez, E. et al. Fullerene coalescence in nanopeapods: a path to novel tubular carbon. Nano Lett. 3, 1037–1042 (2003).

    Article  CAS  Google Scholar 

  10. Terrones, M. Transmission electron microscopy visualizing fullerene chemistry. Nature Chem. 2, 82–83 (2010).

    Article  CAS  Google Scholar 

  11. Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Grubbs, H. R. in Comprehensive Organometallic Chemistry Vol. 8 (eds Wilkinson, G., Stone, F. G. A. & Abel, E. W.) Ch. 54 (Pergamon, 1982).

    Google Scholar 

  13. Toganoh, M., Matsuo, Y. & Nakamura, E. Rhenium-templated regioselective polyhydrogenation reaction of [60]fullerene. Angew. Chem. Int. Ed. 42, 3530–3532 (2003).

    Article  CAS  Google Scholar 

  14. Ulbricht, H., Moos, G. & Hertel, T. Interaction of C-60 with carbon nanotubes and graphite. Phys. Rev. Lett. 90, 095501 (2003).

    Article  PubMed  Google Scholar 

  15. Girifalco, L. A. & Hodak, M. Van der Waals binding energies in graphitic structures. Phys. Rev. B 65, 125404 (2002).

    Article  Google Scholar 

  16. Suenaga, K. et al. Direct imaging of Sc2@C84 molecules encapsulated inside single-wall carbon nanotubes by high resolution electron microscopy with atomic sensitivity. Phys. Rev. Lett. 90, 055506 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Sato, Y. et al. Direct imaging of intracage structure in titanium–carbide endohedral fullerenes. Phys. Rev. B 73, 193401 (2006).

    Article  Google Scholar 

  18. Jin, C. et al. Metal atom catalysed enlargement of fullerenes. Phys. Rev. Lett. 101, 176102 (2008).

    Article  PubMed  Google Scholar 

  19. Urita, K. et al. Defect-induced atomic migration in carbon nanopeapod: tracking the single-atom dynamic behavior. Nano Lett. 4, 2451–2454 (2004).

    Article  CAS  Google Scholar 

  20. Chuvilin, A. et al. Observations of chemical reactions at the atomic scale: dynamics of metal-mediated fullerene coalescence and nanotube rupture. Angew. Chem. Int. Ed. 49, 193–196 (2010).

    Article  CAS  Google Scholar 

  21. Huang, J. Y., Ding, F., Jiao, K. & Yakobson, B. I. Realtime microscopy, kinetics, and mechanism of giant fullerene evaporation. Phys. Rev. Lett. 99, 175503 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Irle, S., Zheng, G. S., Wang, Z. & Morokuma, K. The C-60 formation puzzle ‘solved’: QM/MD simulations reveal the shrinking hot giant road of the dynamic fullerene self-assembly mechanism. J. Phys. Chem. B 110, 14531–14545 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Chabanas, M., Baudouin, A., Coperet, C. & Basset, J. M. A highly active well-defined rhenium heterogeneous catalyst for olefin metathesis prepared via surface organometallic chemistry. J. Am. Chem. Soc. 123, 2062–2063 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Frech, C. M., Blacque, O., & Berke, H. Dinitrosyl rhenium complexes for ring-opening metathesis polymerization (ROMP). Pure Appl. Chem. 78, 1877–1887 (2006).

    Article  CAS  Google Scholar 

  25. Weinstock, I. A., Schrock, R. R. & Davis, W. M. Rhenium(VII) monoimido alkylidyne complexes – the importance of face selectivity in the metathesis of acetylenes via rhenacyclobutadiene intermediates. J. Am. Chem. Soc. 113, 135–144 (1991).

    Article  CAS  Google Scholar 

  26. Chuvilin, A., Kaiser, U., Bichoutskaia, E., Besley, N. A. & Khlobystov, A. N. Direct transformation of graphene to fullerene. Nature Chem. 2, 450–453 (2010).

    Article  CAS  Google Scholar 

  27. Suarez-Martinez, I. et al. Transition metal deposition on graphene and carbon nanotubes. J. Nanosci. Nanotech. 9, 6171–6175 (2009).

    Article  CAS  Google Scholar 

  28. Ivanovskaya, V. V., Köhler, C. & Seifert, G. 3d-metal nanowires and clusters inside carbon nanotubes: structural, electronic and magnetic properties. Phys. Rev. B 75, 075410 (2007).

    Article  Google Scholar 

  29. Ewels, C. P., Heggie, M. I. & Briddon, P. R. Adatoms and nanoengineering of carbon. Chem. Phys. Lett. 351, 178–182 (2002).

    Article  CAS  Google Scholar 

  30. Nasibulin, A. G. et al. A novel hybrid carbon material. Nature Nanotech. 2, 156–161 (2007).

    Article  CAS  Google Scholar 

  31. Zhao, Y. F., Lin, Y. & Yakobson, B. I. Fullerene shape transformations via Stone–Wales bond rotations. Phys. Rev. B 68, 233403 (2003).

    Article  Google Scholar 

  32. Tian, Y. Combined Raman spectroscopy and transmission electron microscopy studies of a NanoBud structure. J. Am. Chem. Soc. 130, 7188–7189 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Gorantla, S. et al. In situ observation of fullerene fusion and ejection in carbon nanotubes. Nanoscale 2, 2077–2079 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Nasibulin, A. G. et al. Investigation of NanoBud formation. Chem. Phys. Lett. 446, 109–114 (2007).

    Article  CAS  Google Scholar 

  35. He, H. Y. & Pan, B. C. Electronic structures and Raman features of carbon nanobud. J. Phys. Chem. C 113, 20822–20826 (2009).

    Article  CAS  Google Scholar 

  36. Shao, Y. et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 8, 3172–3191 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Brenner, D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapour-deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990).

    Article  CAS  Google Scholar 

  38. Gale, J. D. & Rohl, A. L. The General Utility Lattice Program (GULP). Mol. Simul. 29, 291–341 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG) and the Federal State of Baden-Württemberg within the Sub-Ångstrøm Low-Voltage Electron Microscopy project, by the Collaborative Research Centre SFB 569 of the DFG, by the UK Engineering and Physical Research Council (Career Acceleration Fellowship to E.B.), by the High Performance Computing (HPC) facility at the University of Nottingham (E.B., N.A.B. and A.S.) and by the Royal Society and the European Science Foundation (A.N.K.).

Author information

Authors and Affiliations

Authors

Contributions

T.W.C. conceived the experiments, synthesized the materials and analysed the microscopy data. J.B., J.C.M. and J.L. recorded the AC-HRTEM images and contributed to the initial explanation of the observations. J.B. analysed the images and carried out TEM image simulations. E.B., N.A.B. and A.S. performed the theoretical modelling and explained the details of the reaction mechanisms. U.K. contributed to the development of the experimental methodology and discussion of the results. A.N.K. conceived the initial idea, proposed the general mechanism and wrote the original manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Elena Bichoutskaia, Ute Kaiser or Andrei N. Khlobystov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1356 kb)

Supplementary movie 1

Supplementary movie 1 (AVI 3160 kb)

Supplementary movie 2

Supplementary movie 2 (AVI 3017 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamberlain, T., Meyer, J., Biskupek, J. et al. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale. Nature Chem 3, 732–737 (2011). https://doi.org/10.1038/nchem.1115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing