Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Measuring oxygen reduction/evolution reactions on the nanoscale


The efficiency of fuel cells and metal–air batteries is significantly limited by the activation of oxygen reduction and evolution reactions. Despite the well-recognized role of oxygen reaction kinetics on the viability of energy technologies, the governing mechanisms remain elusive and until now have been addressable only by macroscopic studies. This lack of nanoscale understanding precludes optimization of material architecture. Here, we report direct measurements of oxygen reduction/evolution reactions and oxygen vacancy diffusion on oxygen-ion conductive solid surfaces with sub-10 nm resolution. In electrochemical strain microscopy, the biased scanning probe microscopy tip acts as a moving, electrocatalytically active probe exploring local electrochemical activity. The probe concentrates an electric field in a nanometre-scale volume of material, and bias-induced, picometre-level surface displacements provide information on local electrochemical processes. Systematic mapping of oxygen activity on bare and platinum-functionalized yttria-stabilized zirconia surfaces is demonstrated. This approach allows direct visualization of the oxygen reduction/evolution reaction activation process at the triple-phase boundary, and can be extended to a broad spectrum of oxygen-conductive and electrocatalytic materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: ESM technique for measurement of activity on the nanoscale.
Figure 2: Dynamic ESM—separating local kinetics from thermodynamics.
Figure 3: Effects of bias magnitude and tip coating on local ESM.
Figure 4: Numerical modelling of electrochemical potentials at the tip–surface junction.
Figure 5: Local ESM mapping on an YSZ surface with nanometre-scale resolution.
Figure 6: Mapping electrochemical activity near a triple-phase boundary.


  1. Basic Research Needs for Electrical Energy Storage, DOE BES Workshop 2007.

  2. Armand, M. & Tarascon, J. M. Key challenges in future Li-battery research. Nature 451, 652–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Bagotsky, V. S. Fuel Cells: Problems and Solutions (Wiley, 2009).

  4. Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    Article  CAS  Google Scholar 

  5. Wang, D. Y., Xiao, J., Xu, W., Zhang, J. G. High capacity pouch-type Li–air batteries. J. Electrochem. Soc. 157, A760–A764 (2010).

    Article  CAS  Google Scholar 

  6. Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, D., Fu, Z. H., Wei, Z., Huang, T. & Yu, A. S. Polarization of oxygen electrode in rechargeable lithium oxygen batteries. J. Electrochem. Soc. 157, A362–A365 (2010).

    Article  CAS  Google Scholar 

  8. Hummelshøj, J. S. et al. Elementary oxygen electrode reactions in the aprotic Li–air battery. J. Chem. Phys. 132, 071101 (2010).

    Article  PubMed  Google Scholar 

  9. Wilson, J. R. et al. Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nature Mater. 5, 541–544 (2006).

    Article  CAS  Google Scholar 

  10. Reed, J. & Ceder, G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem. Rev. 104, 4513–4534 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Singh, G. K., Ceder, G. & Bazant, M. Z. Intercalation dynamics in rechargeable battery materials: general theory and phase-transformation waves in LiFePO4 . Electrochim. Acta 53, 7599–7613 (2008).

    Article  CAS  Google Scholar 

  12. Goodenough, J. B. Electronic and ionic transport properties and other physical aspects of perovskites. Rep. Prog. Phys. 67, 1915–1993 (2004).

    Article  CAS  Google Scholar 

  13. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nature Chem. 1, 37–46 (2009).

    Article  Google Scholar 

  14. Opitz, A. K. & Fleig, J. Investigation of O2 reduction on Pt/YSZ by means of thin film microelectrodes: the geometry dependence of the electrode impedance. Solid State Ionics 181, 684–693 (2010).

    Article  CAS  Google Scholar 

  15. La O', G. J., Yildiz, B., McEuen, S. & Shao-Horn, Y. Probing oxygen reduction reaction kinetics of Sr-doped LaMnO3 supported on Y2O3-stabilized ZrO2 . J. Electrochem. Soc. 154, B427–B438 (2007).

    Article  CAS  Google Scholar 

  16. Morozovska, A. N., Eliseev, E. A. & Kalinin, S. V. Electromechanical probing of ionic currents in energy storage materials. Appl. Phys. Lett. 96, 222906 (2010).

    Article  Google Scholar 

  17. Balke, N. et al. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotech. 5, 749–754 (2010).

    Article  CAS  Google Scholar 

  18. Balke, N. et al. Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. Nano Lett. 10, 3420–3425 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Bishop, S. R., Duncan, K. L. & Wachsman, E. D. Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide. Electrochim. Acta 54, 1436–1443 (2009).

    Article  CAS  Google Scholar 

  20. Jesse, S., Kalinin, S. V., Proksch, R., Baddorf, A. P. & Rodriguez, B. J. The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18, 435503 (2007).

    Article  Google Scholar 

  21. Weppner, W. & Huggins, R. A. Electrochemical methods for determining kinetic properties of solids. Ann. Rev. Mater. Sci. 8, 269–311 (1978).

    Article  CAS  Google Scholar 

  22. Guo, S. et al. Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films. J. Appl. Phys. 108, 084103 (2010).

    Article  Google Scholar 

  23. Jesse, S., Lee, H. N. & Kalinin, S. V. Quantitative mapping of switching behavior in piezoresponse force microscopy. Rev. Sci. Instrum. 77, 073702 (2006).

    Article  Google Scholar 

  24. Knöner, G., Reimann, K., Röwer, R., Södervall, U. & Schaefer, H.-E. Enhanced oxygen diffusivity in interfaces of nanocrystalline ZrO2–Y2O3 . Proc. Natl Acad. Sci. USA 100, 3870–3873 (2003).

    Article  PubMed  Google Scholar 

  25. Kosacki, I., Rouleau, C. M., Becher, P. F., Bentley, J. & Lowndes, D. H. Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics 176, 1319–1326 (2005).

    Article  CAS  Google Scholar 

  26. Morozovska, A. N., Eliseev, E. A., Balke, N. & Kalinin, S. V. Local probing of ionic diffusion by electrochemical strain microscopy: spatial resolution and signal formation mechanisms. J. Appl. Phys. 108, 053712–21 (2010).

    Article  Google Scholar 

  27. Ciucci, F., Chueh, W. C., Goodwin, D. G. & Haile, S. M. Surface reaction and transport in mixed conductors with electrochemically-active surfaces: a 2-D numerical study of ceria. Phys. Chem. Chem. Phys. 13, 2121–2135 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Ciucci, F. & Goodwin, D. G. Non linear modeling of mixed ionic electronic conductors. ECS Trans. 7, 2075–2082 (2007).

    Article  CAS  Google Scholar 

  29. Lai, W. & Haile, S. M. Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: a case study of ceria. J. Am. Ceram. Soc. 88, 2979–2997 (2005).

    Article  CAS  Google Scholar 

  30. Jasinski, P. Electrical properties of nanocrystalline Sm-doped ceria ceramics. Solid State Ionics 177, 2509–2512 (2006).

    Article  CAS  Google Scholar 

  31. Kilo, M., Argirusis, C., Borchardt, G. & Jackson, R. A. Oxygen diffusion in yttria stabilised zirconia—experimental results and molecular dynamics calculations. Phys. Chem. Chem. Phys. 5, 2219–2224 (2003).

    Article  CAS  Google Scholar 

  32. Bernasik, A., Kowalski, K. & Sadowski, A. Surface segregation in yttria-stabilized zirconia by means of angle resolved X-ray photoelectron spectroscopy. J. Phys. Chem. Solids 63, 233–239 (2002).

    Article  CAS  Google Scholar 

  33. Renewables account for 62 percent of the new electricity generation capacity installed in the EU in 2009. Available at

Download references


This research was conducted (A.K., S.J., S.V.K.) at the Center for Nanophase Materials Sciences, which is sponsored at the Oak Ridge National Laboratory by the Scientific User Facilities Division, US Department of Energy. F.C. acknowledges support from a Marie Curie Reintegration Grant FastCell-256583. The authors are grateful to P. Rack and J. Fowlkes for deposition of platinum nanoparticles.

Author information

Authors and Affiliations



S.J. and S.V.K. proposed the concept. S.J. and A.K. designed the experiments, which were performed by A.K.. S.J. developed the spectroscopic measurement technique and analysis tools. The semi-analytical calculations were performed by A.N.M., and numerical modelling of the electrochemical potential was carried out by F.C. The article was written by A.K. and S.V.K. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Amit Kumar or Sergei V. Kalinin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2166 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, A., Ciucci, F., Morozovska, A. et al. Measuring oxygen reduction/evolution reactions on the nanoscale. Nature Chem 3, 707–713 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing