Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control and induction of surface-confined homochiral porous molecular networks

A Corrigendum to this article was published on 24 October 2014

This article has been updated

Abstract

Homochirality is essential to many biological systems, and plays a pivotal role in various technological applications. The generation of homochirality and an understanding of its mechanism from the single-molecule to supramolecular level have received much attention. Two-dimensional chirality is a subject of intense interest due to the unique possibilities and consequences of confining molecular self-assembly to surfaces or interfaces. Here, we report the perfect generation of two-dimensional homochirality of porous molecular networks at the liquid–solid interface in two different ways: (i) by self-assembly of homochiral building blocks and (ii) by self-assembly of achiral building blocks in the presence of a chiral modifier via a hierarchical structural recognition process, as revealed by scanning tunnelling microscopy. The present results provide important impetus for the development of two-dimensional crystal engineering and may afford opportunities for the utilization of chiral nanowells in chiral recognition processes, as nanoreactors and as data storage systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 2D self-assembly of DBAs at the liquid–solid interface.
Figure 2: Self-assemblies of cDBAs at the 1-phenyloctane/graphite interface.
Figure 3: Molecular models of pairs of cDBA-OC12-(S)-OC13-(R) and heteromolecular pairs formed bycDBA-OC12-(S)-OC13-(R) and DBA-OC12.
Figure 4: Chirality induction experiments with cDBA-OC12-(S)-OC13-(R) as chiral modifier.
Figure 5: Molecular models of CCW (left) and CW (right) hexagonal structures formed from one cDBA and five achiral DBAs.

Similar content being viewed by others

Change history

  • 24 October 2014

    In the version of this Article originally published, a systematic error in converting the energies obtained by molecular mechanics calculations to the total energies used to evaluate the relative stabilities of the molecular network models, led to incorrect energy values being reported. The correct values are as follows: In 'Control of homochirality in a porous molecular network', modelling of hexamers of cDBA-OC12-( S) CW structure was found to be 9.66 kcal mol-1 more stable than the CCW pattern. In 'Chiral induction in a porous molecular network', the difference between CW and CCW hexamers formed by five molecules of DBA-OC12 and one of cDBA-OC12-( S) was found to be only 0.24 kcal mol−1. In 'Hierarchical chiral induction mechanism', for cyclic hexamers of one chiral cDBA-OC12-( S )-OC13-( R) and five achiral DBA-OC12 on graphite, the CW hexagonal structure is favoured by 3.88 kcal mol−1. In comparison, in similar structures made from cDBA-OC12-( S )-OC13-( R) and DBA-OC13 the energy difference between the CW and CCW structures was only 1.33 kcal mol−1. These errors do not affect the conclusions of the work, and all of the values have been corrected in the online versions of the Article.

References

  1. Barth, J. V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 58, 375–407 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Bartels, L. Tailoring molecular layers at metal surfaces. Nature Chem. 2, 87–95 (2010).

    Article  CAS  Google Scholar 

  3. Elemans, J. A. A. W., De Cat, I., Xu, H. & De Feyter, S. Two-dimensional chirality at liquid–solid interfaces. Chem. Soc. Rev. 38, 722–736 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Katsonis, N., Lacaze, E. & Feringa, B. L. Molecular chirality at fluid/solid interfaces: expression of asymmetry in self-organised monolayers. J. Mater. Chem. 18, 2065–2073 (2008).

    Article  CAS  Google Scholar 

  5. Raval, R. Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques. Chem. Soc. Rev. 38, 707–721 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Ernst, K.-H. Supramolecular surface chirality. Top. Curr. Chem. 265, 209–252 (2006).

    Article  CAS  Google Scholar 

  7. Pérez-García, L. & Amabilino, D. B. Spontaneous resolution, whence and whither: from enantiomorphic solids to chiral liquid crystals, monolayers and macro- and supra-molecular polymers and assemblies. Chem. Soc. Rev. 36, 941–967 (2007).

    Article  PubMed  Google Scholar 

  8. Weigelt, S. et al. Chiral switching by spontaneous conformational change in adsorbed organic molecules. Nature Mater. 5, 112–117 (2006).

    Article  CAS  Google Scholar 

  9. Wei, Y., Kannappan, K., Flynn, G. W. & Zimmt, M. B. Scanning tunneling microscopy of prochiral anthracene derivatives on graphite: chain length effects on monolayer morphology. J. Am. Chem. Soc. 126, 5318–5322 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Écija, D. et al. Hierarchic self-assembly of nanoporous chiral networks with conformationally flexible porphyrins. ACS Nano 4, 4936–4942 (2010).

    Article  PubMed  Google Scholar 

  11. Gopakumar, T. G. et al. Coverage driven formation of homochiral domains of an achiral molecule on Au(111). J. Phys. Chem. C 114, 18247–18251 (2010).

    Article  CAS  Google Scholar 

  12. Mugarza, A. et al. Orbital specific chirality and homochiral self-assembly of achiral molecules induced by charge transfer and spontaneous symmetry breaking. Phys. Rev. Lett. 105, 115702 (2010).

  13. Xiao, W. et al. Self-assembly of chiral molecular honeycomb networks on Au(111). J. Am. Chem. Soc. 130, 8910–8912 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. De Feyter, S. et al. Expression of chirality and visualization of stereogenic centers by scanning tunneling microscopy. Langmuir 15, 2817–2822 (1999).

    Article  CAS  Google Scholar 

  15. Yablon, D. G., Guo, J., Knapp, D., Fang, H. & Flynn, G. W. Scanning tunneling microscopy investigation of a chirally pure molecule at the liquid–solid interface: unambiguous topographic markers J. Phys. Chem. B 105, 4313–4316 (2001).

    Article  CAS  Google Scholar 

  16. Iavicoli, P. et al. Tuning the supramolecular chirality of one- and two-dimensional aggregates with the number of stereogenic centers in the component porphyrins. J. Am. Chem. Soc. 132, 9350–9362 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Plass, K. E., Grzesiak, A. L. & Matzger, A. J. Molecular packing and symmetry of two-dimensional crystals. Acc. Chem. Res. 40, 287–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Stevens, F., Dyer, D. J. & Walba, D. M. Direct observation of enantiomorphous monolayer crystals from enantiomers by scanning tunneling microscopy. Angew. Chem. Int. Ed. Engl. 35, 900–901 (1996).

    Article  CAS  Google Scholar 

  19. Lorenzo, M. O., Baddeley, C. J., Muryn, C. & Raval, R. Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules. Nature 404, 376–379 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Ernst, K.-H. Amplification of chirality in two-dimensional molecular lattices. Curr. Opin. Colloid Interface Sci. 13, 54–59 (2008).

    Article  CAS  Google Scholar 

  21. Parschau, M., Romer, S. & Ernst, K.-H. Induction of homochirality in achiral enantiomorphous monolayers. J. Am. Chem. Soc. 126, 15398–15399 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Parschau, M., Kampen, T. & Ernst, K.-H. Homochirality in monolayers of achiral meso tartaric acid. Chem. Phys. Lett. 407, 433–437 (2005).

    Article  CAS  Google Scholar 

  23. Fasel, R., Parschau, M. & Ernst, K.-H. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 439, 449–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Parschau, M., Fasel, R. & Ernst, K.-H. Coverage and enantiomeric excess dependent enantiomorphism in two dimensional molecular crystals. Cryst. Growth Des. 8, 1890–1896 (2008).

    Article  CAS  Google Scholar 

  25. Haq, S., Liu, N., Humblot, V., Jansen, A. P. J. & Raval, R. Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces. Nature Chem. 1, 409–414 (2009).

    Article  CAS  Google Scholar 

  26. Green, M. M. et al. A helical polymer with a cooperative response to chiral information. Science 268, 1860–1866 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Palmans, A. R. A., Vekemans, J. A. J. M., Havinga, E. E. & Meijer E. W. Sergeants-and-soldiers principle in chiral columnar stacks of disc-shaped molecules with C 3 symmetry. Angew. Chem. Int. Ed. 36, 2648–2651 (1997).

    Article  CAS  Google Scholar 

  28. Bonifazi, D., Mohnani, S. & Llanes-Pallas, A. Supramolecular chemistry at interfaces: molecular recognition on nanopatterned porous surfaces. Chem. Eur. J. 15, 7004–7025 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Ma, X. et al. Molecular miscibility characteristics of self-assembled 2D molecular architectures. J. Mater. Chem. 18, 2074–2081 (2008).

    Article  CAS  Google Scholar 

  30. Kudernac, T., Lei, S., Elemans, J. A. A. W. & De Feyter, S. Two-dimensional supramolecular self-assembly: nanoporous networks on surfaces. Chem. Soc. Rev. 38, 402–421 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Lobo-Checa, J. et al. Band formation from coupled quantum dots formed by a nanoporous network on a copper surface. Science 325, 300–303 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Palma, C.-A. et al. Tailoring bicomponent supramolecular nanoporous networks: phase segregation, polymorphism, and glasses at the solid–liquid interface. J. Am. Chem. Soc. 131, 13062–13071.

    Article  CAS  PubMed  Google Scholar 

  33. Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R. & Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Stepanow, S. et al. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nature Mater. 3, 229–233 (2004).

    Article  CAS  Google Scholar 

  35. Schull, G., Douillard, L., Fiorini-Debuisschert, C. & Charra, F. Single-molecule dynamics in a self-assembled 2D molecular sieve. Nano Lett. 6, 1360–1363 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Adisoejoso, J. et al. Two-dimensional crystal engineering: a four-component architecture at a liquid–solid interface. Angew. Chem. Int. Ed. 48, 7353–7357 (2009).

    Article  CAS  Google Scholar 

  37. Knudsen, M. M. et al. Controlling chiral organization of molecular rods on Au(111) by molecular design. J. Am. Chem. Soc. 133, 4896–4905 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Tahara, K. et al. Two-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitation. J. Am. Chem. Soc. 128, 16613–16625 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Lei, S. et al. One bulding block, two different supramolecular surface-confined patterns: concentration in control at the solid–liquid interface. Angew. Chem. Int. Ed. 47, 2964–2968 (2008).

    Article  CAS  Google Scholar 

  40. Tahara, K., Lei, S., Adisoejoso, J., De Feyter, S. & Tobe, Y. Supramolecular surface-confined architectures created by self-assembly of triangular phenylene-ethynylene macrocycles via van der Waals interaction. Chem. Commun. 46, 8507–8525 (2010).

    Article  CAS  Google Scholar 

  41. Lei, S. et al. Towards two-dimensional nanoporous networks: crystal engineering at the solid–liquid interface. CrystEngComm 12, 3369–3381 (2010).

    Article  CAS  Google Scholar 

  42. Lei, S. et al. Programmable hierarchical three-component 2D assembly at a liquid–solid interface: recognition, selection, and transformation. Nano Lett. 8, 2541–2546 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Lazzaroni, R., Calderone, A., Lambin, G., Rabe, J. P. & Brédas, J. L. A theoretical approach to the STM imaging of adsorbates on the graphite surface. Synth. Met. 41, 525–528 (1991).

    Article  CAS  Google Scholar 

  44. Yoneya, M. & Yokoyama, H. Chirality induction from chiral molecules to adsorbed monolayers. J. Chem. Phys. 114, 9532–9538 (2001).

    Article  CAS  Google Scholar 

  45. Claypool, C. L. et al. Source of image contrast in STM images of functionalized alkanes on graphite: a systematic functional group approach. J. Phys. Chem. B 101, 5978–5995 (1997).

    Article  CAS  Google Scholar 

  46. IIan, B., Florio, G. M., Hybertsen, M. S., Berne, B. J. & Flynn, G. W. Scanning tunneling microscopy images of alkane derivatives on graphite: role of electronic effects. Nano Lett. 8, 3160–3165 (2008).

    Article  Google Scholar 

  47. Claypool, C. L., Faglioni, F., Matzger, A. J., Goddard III, W. A. & Lewis, N. S. Effect of molecular geometry on the STM image contrast of methyl- and bromo-substituted alkanes and alkanols on graphite. J. Phys. Chem. B 103, 9690–9699 (1999).

    Article  CAS  Google Scholar 

  48. Faglioni, F., Claypool, C. L., Lewis, N. S. & Goddard III, W. A. Theoretical description of the STM images of alkanes and substituted alkanes adsorbed on graphite. J. Phys. Chem. B 101, 5996–6020 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (Japan), the Fund of Scientific Research – Flanders (FWO), K.U.Leuven (GOA), the Belgian Federal Science Policy Office (IAP-6/27, NMP4-SL-2008-214340, project RESOLVE), and the JSPS and FWO under the Japan–Belgium Research Cooperative Program. E.G. and J.A. are grateful to the Agency for Innovation by Science and Technology in Flanders (IWT). M.O.B. acknowledges a Marie Curie Intra-European Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.T., H.Y., E.G. and J.A. acquired the STM data. H.Y. performed MM simulations. M.O.B. performed clustering analysis. K.T., H.Y., E.G. and J.A. analysed the STM data. K.T., H.Y., K.I. and Y.T. contributed to the synthesis of new DBA derivatives. K.T., S.D.F. and Y.T. conceived and designed the concepts. K.T., E.G., S.D.F. and Y.T. co-wrote the paper. H.Y. and E.G. contributed equally. All authors contributed to the conception of experiments and discussion of the results, and commented on the manuscript.

Corresponding authors

Correspondence to Steven De Feyter or Yoshito Tobe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3053 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahara, K., Yamaga, H., Ghijsens, E. et al. Control and induction of surface-confined homochiral porous molecular networks. Nature Chem 3, 714–719 (2011). https://doi.org/10.1038/nchem.1111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing