Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric total syntheses of (+)- and (−)-versicolamide B and biosynthetic implications

A Corrigendum to this article was published on 01 May 2009

This article has been updated

Abstract

The Diels–Alder reaction is one of the most well-studied, synthetically useful organic transformations. Although it has been postulated that a significant number of naturally occurring substances arise by biosynthetic Diels–Alder reactions, rigorous confirmation of a mechanistically distinct natural Diels–Alderase enzyme remains elusive. Within this context, several related fungi within the Aspergillus genus produce a number of metabolites of opposite absolute configuration, including (+)- or (−)-versicolamide B. These alkaloids are hypothesized to arise via biosynthetic Diels–Alder reactions, implying that each Aspergillus species possesses enantiomerically distinct Diels–Alderases. In this paper, experimental validation of these biosynthetic proposals via deployment of the intramolecular hetero-Diels–Alder reaction as a key step in the asymmetric total syntheses of (+)- and (−)-versicolamide B is described. Laboratory validation of the proposed biosynthetic Diels–Alder construction, coupled with the secondary metabolite profile of the producing fungi, reveals that each Aspergillus species has evolved enantiomerically distinct indole oxidases, as well as enantiomerically distinct Diels–Alderases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Several representative prenylated indole alkaloids.
Figure 2: Two proposed biosynthetic pathways to (+)-versicolamide B.
Figure 3: Preparation of the dioxopiperazines 19 and 20.
Figure 4: Preparation of the Diels–Alder precursors 23, 25, 27 and 29.
Figure 5: Biomimetic Diels–Alder cycloaddition reactions.
Figure 6: Molecular modelling in support of the observed Diels–Alder stereochemical preference.

Similar content being viewed by others

Change history

  • 06 April 2009

    In the version of this Article originally published, the stereochemical descriptors given in the Methods section for compounds 23, 25, 27 and 29 were incorrect, and the graphical abstract on the Table of Contents page was missing a double bond in (+)-versicolamide B. These errors have now been corrected in the HTML and PDF versions.

References

  1. Croteau, R. Biosynthesis and catabolism of monoterpenoids. Chem. Rev. 87, 929–954 (1987).

    Article  CAS  Google Scholar 

  2. Tsuda, M., Kawasaki, N. & Kobayashi, J. Iricinols A and B, first antipodes of manzamine-related alkaloids from an Okinawan marine sponge. Tetrahedron 50, 7957–7960 (1994).

    Article  CAS  Google Scholar 

  3. Baldwin, J. E. & Whitehead, R. C. On the biosynthesis of manzamines. Tetrahedron Lett. 33, 2059–2062 (1992).

    Article  CAS  Google Scholar 

  4. Williams, R. M., Stocking, E. M. & Sanz-Cevera, J.F. Biosynthesis of prenylated alkaloids derived from tryptophan. Top. Curr. Chem. 209, 97–173 (2000).

    Article  CAS  Google Scholar 

  5. Williams, R. M. Total synthesis and biosynthesis of the paraherquamides: an intriguing story of the biological Diels–Alder construction. Chem. Pharm. Bull. 50, 711–740 (2002).

    Article  CAS  Google Scholar 

  6. Williams, R. M., Stocking, E. M. & Sanz-Cevera, J. F. Biosynthesis of prenylated alkaloids derived from tryptophan. Top. Curr. Chem. 209, 97–173 (2000).

    Article  CAS  Google Scholar 

  7. Qian-Cutrone, J. et al. Stephacidin A and B: two structurally novel, selective inhibitors of the testosterone-dependent prostate LNCaP Cells. J. Am. Chem. Soc. 124, 14556–14557 (2002).

    Article  CAS  Google Scholar 

  8. Martinez-Luis, S. et al. Malbrancheamide, a new calmodulin inhibitor from the fungus Malbranchea aurantiaca. Tetrahedron 62, 1817–1822 (2006).

  9. Porter, A. E. A. & Sammes, P. G. A. Diels–Alder reaction of possible biosynthetic importance. J. Chem. Soc. Chem. Commun. 1103–1104 (1970).

  10. Baldas, J., Birch, A. J. & Russell, R. A. Studies in relation to biosynthesis. Part XLVI. Incorporation of cyclo-l-tryptophyl-l-proline into brevianamide A. J. Chem. Soc. Perkin Trans. I 50–52 (1974).

  11. Greshock, T. J. & Williams, R. W. Improved biomimetic total synthesis of D,L-stephacidin A. Org. Lett. 9, 4255–4258 (2007).

    Article  CAS  Google Scholar 

  12. Greshock, T. J., Grubbs, A. W, Tsukamoto, S. & Williams, R. W. A Concise, biomimetic total synthesis of stephacidin A and notoamide B. Angew. Chem. Int. Ed. 46, 2262–2265 (2007).

    Article  CAS  Google Scholar 

  13. Williams, R. M., Sanz-Cervera, J. F., Sancenón, F., Marco, J. A. & Halligan, K. Biomimetic Diels–Alder cyclizations for the construction of the brevianamide, paraherquamide, sclerotamide, and VM55599 ring systems. J. Am. Chem. Soc. 120, 1090–1091 (1998).

    Article  CAS  Google Scholar 

  14. Williams, R. M., Sanz-Cervera, J. F., Sancenón, F., Marco, J. A. & Halligan, K. Biomimetic Diels–Alder cyclizations for the construction of the brevianamide, paraherquamide, sclerotamide, asperparaline and VM55599 ring systems. Bioorg. Med. Chem. 6, 1233–1241 (1998).

    Article  CAS  Google Scholar 

  15. Sanz-Cervera, J. F. et al. A synthetic model for the [4 + 2] cycloaddition in the biosynthesis of the brevianamides, paraherquamides, and related compounds. Tetrahedron 56, 6345–6358 (2000).

    Article  CAS  Google Scholar 

  16. Greshock, T. J., Grubbs, A. W. & Williams, R. M. Concise, biomimetic total synthesis of d,l-marcfortine C. Tetrahedron 63, 6124–6130 (2007).

    Article  CAS  Google Scholar 

  17. Stocking, E. M., Sanz-Cervera, J. F. & Williams, R. M. Total synthesis of VM55599. Utilization of an intramolecular Diels–Alder cycloaddition of potential biogenetic relevance. J. Am. Chem. Soc. 122, 1675–1683 (2000).

    Article  CAS  Google Scholar 

  18. Sanz-Cervera, J. F. & Williams, R. M. Asymmetric total synthesis of (−)-VM55599: establishment of the absolute stereochemistry and biogenetic implications. J. Am. Chem. Soc. 124, 2556–2559 (2002).

    Article  CAS  Google Scholar 

  19. Miller, K. A. et al. Biomimetic total synthesis of malbrancheamide and malbrancheamide B. J. Org. Chem. 73, 3116–3119 (2008).

    Article  CAS  Google Scholar 

  20. Greshock, T. J. et al. Isolation, structure elucidation, and biomimetic total synthesis of versicolamide B, and the isolation of antipodal (−)-stephacidin A and (+)-notoamide B from Aspergillus versicolor NRRL 35600. Angew. Chem. Int. Ed. 47, 3573–3577 (2008).

    Article  CAS  Google Scholar 

  21. Stocking, E. M. & Williams, R. M. Chemistry and biology of biosynthetic Diels–Alder reactions. Angew. Chem. Int. Ed. 42, 3078–3115 (2003).

    Article  CAS  Google Scholar 

  22. Fusetani, N., Asai, N., Matsunaga, S., Honda, K. & Yasumuro, K. Cyclostellettamines A–F, pyridine alkaloids which inhibit binding of methyl quinuclidinyl benzilate (QNB) to muscarinic acetylcholine receptors, from the marine sponge, Stefletta maxitnal. Tetrahedron Lett. 35, 3967–3970 (1994).

    Article  CAS  Google Scholar 

  23. Baldwin, J. E. et al. Studies on the biomimetic synthesis of the manzamine alkaloids. Chem. Eur. J. 5, 3154–3161 (1999).

    Article  Google Scholar 

  24. Oikawa, H., Suzuki, Y., Naya, A., Katayama, K. & Ichihara, A. First direct evidence in biological Diels–Alder reaction of incorporation of diene–dienophile precursors in the biosynthesis of solanapyrones. J. Am. Chem. Soc. 116, 3605–3606 (1994).

    Article  CAS  Google Scholar 

  25. Ruch, C., Guimarães, W., Udier-Blagovic, M. & Jorgensen, W. L. Macrophomate synthase: QM/MM simulations address the Diels–Alder versus Michael–aldol reaction mechanism. J. Am. Chem. Soc. 127, 3577–3588 (2005).

    Article  Google Scholar 

  26. Domingo, L. R., Sanz-Cervera, J. F., Williams, R. M., Picher, M. T. & Marco, J. A. Biosynthesis of the brevianamides. An ab initio study of the biosynthetic intramolecular Diels–Alder cycloaddition. J. Org. Chem. 62, 1662–1667 (1997).

    Article  CAS  Google Scholar 

  27. Domingo, L. R., Zaragozá, R. J. & Williams, R. M. Studies on the biosynthesis of paraherquamide A and VM99955. A theoretical study of intramolecular Diels–Alder cycloaddition. J. Org. Chem. 68, 2895–2902 (2003).

    Article  CAS  Google Scholar 

  28. Takayama, H. et al. Stereochemical studies on the Uncaria alkaloid, 3-oxo-7-hydroxy-3,7-secorhynchophylline: the absolute configuration of 3-hydroxyoxindole derivatives. Tetrahedron 55, 6841–6846 (1999).

    Article  CAS  Google Scholar 

  29. Adams, L. A., Gray, C. R. & Williams, R. M. Concise synthesis of the core bicyclo[2.2.2]diazaoctane ring common to asperparaline, paraherquamide, and stephacidin alkaloids. Tetrahedron Lett. 45, 4489–4493 (2004).

    Article  CAS  Google Scholar 

  30. Adams, L. A., Valente, M. W. N. & Williams, R. M. A concise synthesis of d,l-brevianamide B via a biomimetically-inspired IMDA construction. Tetrahedron 62, 5195–5200 (2006).

    Article  CAS  Google Scholar 

  31. Kato, H. et al. Notoamides A-D: Prenylated indole alkaloids isolated from a marine-derived fungus, Aspergillus sp. Angew. Chem. Int. Ed. 46, 2254–2256 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Tohru Fukuyama on the occasion of his 60th birthday. Financial support from the US National Institutes of Health (CA70375) is gratefully acknowledged. We are indebted to Alan J. Kennan for measurements of CD spectra and Scott Newkirk for HPLC assistance. We thank Frank R. Stermitz for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.M.W and K.A.M conceived the experiments. K.A.M performed the laboratory experiments and analysed the results. S.T. discovered (−)-versicolamide B as a natural metabolite of a marine-derived Aspergillus species. K.A.M and R.M.W wrote the paper.

Corresponding author

Correspondence to Robert M. Williams.

Supplementary information

Supplementary information

Supplementary information (PDF 1295 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, K., Tsukamoto, S. & Williams, R. Asymmetric total syntheses of (+)- and (−)-versicolamide B and biosynthetic implications. Nature Chem 1, 63–68 (2009). https://doi.org/10.1038/nchem.110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing