Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets

Abstract

Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose meter—used worldwide by diabetes sufferers—we demonstrate a method to use such meters to quantify non-glucose targets, ranging from a recreational drug (cocaine, 3.4 µM detection limit) to an important biological cofactor (adenosine, 18 µM detection limit), to a disease marker (interferon-gamma of tuberculosis, 2.6 nM detection limit) and a toxic metal ion (uranium, 9.1 nM detection limit). The method is based on the target-induced release of invertase from a functional-DNA–invertase conjugate. The released invertase converts sucrose into glucose, which is detectable using the meter. The approach should be easily applicable to the detection of many other targets through the use of suitable functional-DNA partners (aptamers, DNAzymes or aptazymes).

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic of method using a PGM to detect a wide range of targets beyond glucose.
Figure 2: Design and performance of cocaine and adenosine detections using a PGM.
Figure 3: Design and performance of IFN-γ and UO22+ detections using a PGM.

References

  1. Daar, A. S. et al. Top ten biotechnologies for improving health in developing countries. Nat. Genet. 32, 229–232 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Martinez, A. W., Phillips, S. T., Butte, M. J. & Whitesides, G. M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46, 1318–1320 (2007).

    Article  CAS  Google Scholar 

  3. Fan, C., Plaxco, K. W. & Heeger, A. J. Biosensors based on binding-modulated donor–acceptor distances. Trends Biotechnol. 23, 186–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Xia, F. et al. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc. Natl Acad. Sci. USA 107, 10837–10841 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell. Biol. 3, 906–918 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. Review–the fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Wegner, S. V., Okesli, A., Chen, P. & He, C. Design of an emission ratiometric biosensor from MerR family proteins: a sensitive and selective sensor for Hg2+ . J. Am. Chem. Soc. 129, 3474–3475 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Murray, R. W. Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 108, 2688–2720 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Favier, F., Walter, E. C., Zach, M. P., Benter, T. & Penner, R. M. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293, 2227–2231 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Clark, L. C. & Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NY Acad. Sci. 102, 29–45 (1962).

    Article  CAS  PubMed  Google Scholar 

  12. Montagnana, M., Caputo, M., Giavarina, D. & Lippi, G. Overview on self-monitoring of blood glucose. Clin. Chim. Acta 402, 7–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Carroll, A. E., Marrero, D. G. & Downs, S. M. The HealthPia GlucoPack (TM) diabetes phone: a usability study. Diabetes Technol. Ther. 9, 158–164 (2007).

    Article  PubMed  Google Scholar 

  14. Nie, Z., Deiss, F., Liu, X., Akbulut, O. & Whitesides, G. M. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10, 3163–3169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robertson, D. L. & Joyce, G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded-DNA. Nature 344, 467–468 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Breaker, R. R. & Joyce, G. F. A DNA enzyme that cleaves RNA. Chem. Biol. 1, 223–229 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Breaker, R. R. Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13, 31–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, J. F., Hesselberth, J. R., Meyers, L. A. & Ellington, A. D. Aptamer database. Nucleic Acids Res. 32, D95–D100 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Navani, N. K. & Li, Y. Nucleic acid aptamers and enzymes as sensors. Curr. Opin. Chem. Biol. 10, 272–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Song, S., Wang, L., Li, J., Fan, C. & Zhao, J. Aptamer-based biosensors. Trends Anal. Chem. 27, 108–117 (2008).

    Article  CAS  Google Scholar 

  22. Liu, J., Cao, Z. & Lu, Y. Functional nucleic acid sensors. Chem. Rev. 109, 1948–1998 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, J. & Lu, Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 122, 10466–10467 (2000).

    Article  CAS  Google Scholar 

  24. Nutiu, R. & Li, Y. Structure-switching signaling aptamers. J. Am. Chem. Soc. 125, 4771–4778 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Yang, C. J., Jockusch, S., Vicens, M., Turro, N. J. & Tan, W. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc. Natl Acad. Sci. USA 102, 17278–17283 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Csordas, A. et al. Detection of proteins in serum by micromagnetic aptamer PCR (MAP) technology. Angew. Chem. Int. Ed. 49, 355–358 (2010).

    Article  CAS  Google Scholar 

  27. Oh, S. S., Plakos, K., Lou, X. H., Xiao, Y. & Soh, H. T. In vitro selection of structure-switching, self-reporting aptamers. Proc. Natl Acad. Sci. USA 107, 14053–14058 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, J. & Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125, 6642–6643 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Willner, I., Shlyahovsky, B., Zayats, M. & Willner, B. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem. Soc. Rev. 37, 1153–1165 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Xue, X., Wang, F. & Liu, X. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc. 130, 3244–3245 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Willner, I. & Zayats, M. Electronic aptamer-based sensors. Angew. Chem. Int. Ed. 46, 6408–6418 (2007).

    Article  CAS  Google Scholar 

  32. Lubin, A. A. & Plaxco, K. W. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc. Chem. Res. 43, 496–505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Swensen, J. S. et al. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. J. Am. Chem. Soc. 131, 4262–4266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yigit, M. V., Mazumdar, D. & Lu, Y. MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconj. Chem. 19, 412–417 (2008).

    Article  CAS  Google Scholar 

  35. Liu, J., Mazumdar, D. & Lu, Y. A simple and sensitive 'dipstick' test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew. Chem. Int. Ed. 45, 7955–7959 (2006).

    Article  CAS  Google Scholar 

  36. Niemeyer, C. M. Semisynthetic DNA–protein conjugates for biosensing and nanofabrication. Angew. Chem. Int. Ed. 49, 1200–1216 (2010).

    Article  CAS  Google Scholar 

  37. Stojanovic, M. N., de Prada, P. & Landry, D. W. Aptamer-based folding fluorescent sensor for cocaine. J. Am. Chem. Soc. 123, 4928–4931 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Huizenga, D. E. & Szostak, J. W. A DNA aptamer that binds adenosine and ATP. Biochemistry 34, 656–665 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Vallon, V., Muhlbauer, B. & Osswald, H. Adenosine and kidney function. Physiol. Rev. 86, 901–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Sassanfar, M. & Szostak, J. W. An RNA motif that binds ATP. Nature 364, 550–553 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, P. P., Ramanathan, M., Hunt, C. A. & Garovoy, M. R. An oligonucleotide blocks interferon-γ signal transduction. Transplantation 62, 1297–1301 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Balasubrananian, V., Nguyen, L. T., Balasubramanian, S. V. & Ramanathan, M. Interferon-γ-inhibitory oligodeoxynucleotides alter the conformation of interferon-γ. Mol. Pharmacol. 53, 926–932 (1998).

    Google Scholar 

  43. Tuleuova, N. et al. Development of an aptamer beacon for detection of interferon-γ. Anal. Chem. 82, 1851–1857 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Boehm, U., Klamp, T., Groot, M. & Howard, J. C. Cellular responses to interferon-γ. Annu. Rev. Immunol. 15, 749–795 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Pai, M., Riley, L. W. & Colford, J. M. Interferon-γ assays in the immunodiagnosis of tuberculosis: a systematic review. Lancet Infect. Dis. 4, 761–776 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, H. et al. A microdevice for multiplexed detection of T-cell-secreted cytokines. Lab Chip 8, 2197–2205 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Zhu, H. et al. Detecting cytokine release from single T-cells. Anal. Chem. 81, 8150–8156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, J. et al. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc. Natl Acad. Sci. USA 104, 2056–2061 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the US Department of Energy (DE-FG02-08ER64568), National Institutes of Health (ES16865) and National Science Foundation (CTS-0120978) for financial support, and L.H. Tan and H.E. Ihms for the preparation of figures and proof reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and Y.X. conceived and designed the experiments. Y.X. performed the experiments and analysed the data. Y.L. and Y.X. co-wrote the paper.

Corresponding author

Correspondence to Yi Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 678 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiang, Y., Lu, Y. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nature Chem 3, 697–703 (2011). https://doi.org/10.1038/nchem.1092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1092

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing