Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A coordination chemistry dichotomy for icosahedral carborane-based ligands

Abstract

Although the majority of ligands in modern chemistry take advantage of carbon-based substituent effects to tune the sterics and electronics of coordinating moieties, we describe here how icosahedral carboranes—boron-rich clusters—can influence metal–ligand interactions. Using a series of phosphine–thioether chelating ligands featuring meta- or ortho-carboranes grafted on the sulfur atom, we were able to tune the lability of the platinum–sulfur interaction of platinum(II)–thioether complexes. Experimental observations, supported by computational work, show that icosahedral carboranes can act either as strong electron-withdrawing ligands or electron-donating moieties (similar to aryl- or alkyl-based groups, respectively), depending on which atom of the carborane cage is attached to the thioether moiety. These and similar results with carborane-selenol derivatives suggest that, in contrast to carbon-based ligands, icosahedral carboranes exhibit a significant dichotomy in their coordination chemistry, and can be used as a versatile class of electronically tunable building blocks for various ligand platforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coordination chemistry and electronic characteristics of phosphine–thioether (P,S) ligands.
Figure 2: Structures of the carborane thiols (I, II, III and V) used to synthesize the (P,S) chelate ligands investigated in this study.
Figure 3: Synthetic scheme outlining the synthesis of Pt(II) complexes.
Figure 4: Characterization of the ligands.
Figure 5: Crystallographically derived X-ray structure representations of closed carborane-based Pt(II) complexes 4a–4d.
Figure 6: Studies of carborane-selenol derivatives.

Similar content being viewed by others

References

  1. Zhao, H. & Gabbaï, F. P. A bidentate Lewis acid with a telluronium ion as an anion-binding site. Nature Chem. 2, 984–990 (2010).

    Article  CAS  Google Scholar 

  2. Trnka, T. M. & Grubbs, R. H. The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story. Acc. Chem. Res. 34, 18–29 (2001).

    Article  CAS  Google Scholar 

  3. Olenyuk, B., Whiteford, J. A., Fechtenkötter, A. & Stang, P. J. Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 398, 796–799 (1999).

    Article  CAS  Google Scholar 

  4. Yaliraki, S. N., Kemp, M. & Ratner, M. A. Conductance of molecular wires: influence of molecule–electrode binding. J. Am. Chem. Soc. 121, 3428–3434 (1999).

    Article  CAS  Google Scholar 

  5. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  6. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals 3rd edn (Wiley, 2001).

    Google Scholar 

  7. Tolman, C. A. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem. Rev. 77, 313–348 (1977).

    Article  CAS  Google Scholar 

  8. Bonasia, P. J., Christou, V. & Arnold, J. Alkyl-, silyl-, and germyl-substituted thiolate, selenolate, and tellurolate derivatives and interconversion of silyl species by chalcogen metathesis. J. Am. Chem. Soc. 115, 6777–6781 (1993).

    Article  CAS  Google Scholar 

  9. Duchateau, R. Incompletely condensed silsesquioxanes: versatile tools in developing silica-supported olefin polymerization catalysts. Chem. Rev. 102, 3525–3542 (2002).

    Article  CAS  Google Scholar 

  10. Mintcheva, N., Tanabe, M. & Osakada, K. Synthesis and characterization of platinasilsesquioxane complexes and their reaction with arylboronic acid. Organometallics 30, 187–190 (2011).

    Article  CAS  Google Scholar 

  11. Wolczanski, P. T. Structure and reactivity studies of transition metals ligated by tBuSi3X (X=O, NH, N, S, and CC). Chem. Commun. 740–757 (2009).

  12. Diaconescu, P. L. Reactions of aromatic N-heterocycles with d0fn-metal alkyl complexes supported by chelating diamide ligands. Acc. Chem. Res. 43, 1352–1363 (2010).

    Article  CAS  Google Scholar 

  13. Surry, D. S. & Buchwald, S. L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed. 47, 6338–6361 (2008).

    Article  CAS  Google Scholar 

  14. Back, O., Donnadieu, B., Parameswaran, P., Frenking, G. & Bertrand, G. Isolation of crystalline carbene-stabilized P2-radical cations and P2-dications. Nature Chem. 2, 369–373 (2010).

    Article  CAS  Google Scholar 

  15. Casey, C. P. et al. Electron withdrawing substituents on equatorial and apical phosphines have opposite effects on the regioselectivity of rhodium catalyzed hydroformylation. J. Am. Chem. Soc. 119, 11817–11825 (1997).

    Article  CAS  Google Scholar 

  16. Gunanathan, C., Ben-David, Y. & Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2 . Science 317, 790–792 (2007).

    Article  CAS  Google Scholar 

  17. Welch, G. C., San Juan, R. R., Masuda, J. D. & Stephan, D. W. Reversible, metal-free hydrogen activation. Science 314, 1124–1126 (2006).

    Article  CAS  Google Scholar 

  18. Grimes, R. N. Carboranes 2nd edn (Elsevier, 2011).

    Google Scholar 

  19. Hawthorne, M. F. et al. Electrical or photocontrol of the rotary motion of a metallacarborane. Science 303, 1849–1851 (2004).

    Article  CAS  Google Scholar 

  20. Zheng, Z., Diaz, M., Knobler, C. B. & Hawthorne, M. F. A mercuraborand characterized by B–Hg–B bonds: synthesis and structure of cyclo-[(t-BuMe2Si)2C2B10H8Hg]3 . J. Am. Chem. Soc. 117, 12338–12339 (1995).

    Article  CAS  Google Scholar 

  21. Hawthorne, M. F. & Zheng, Z. Recognition of electron-donating guests by carborane-supported multidentate macrocyclic Lewis acid hosts: mercuracarborand chemistry. Acc. Chem. Res. 30, 267–276 (1997).

    Article  CAS  Google Scholar 

  22. Crowther, D. J., Baenziger, N. C. & Jordan, R. F. Group 4 metal dicarbollide chemistry. Synthesis, structures and reactivity of electrophilic alkyl complexes (Cp*)(C2B9H11)M(R), M=Hf, Zr. J. Am. Chem. Soc. 113, 1455–1457 (1991).

    Article  CAS  Google Scholar 

  23. Viñas, C., Núñez, R., Teixidor, F., Kivekäs, R. & Sillanpää R. Versatility of nido-monophosphinocarboranes as ligands. Tricoordination via PPh2 and BH in rhodium(I) complexes. Organometallics 17, 2376–2378 (1998).

    Article  Google Scholar 

  24. Olejniczak, A. B., Mucha, P., Grüner, B. & Lesnikowski, Z. J. DNA-dinucleotides bearing a 3′,3′-cobalt- or 3′,3′-iron-1,2,1′,2′-dicarbollide complex. Organometallics 26, 3272–3274 (2007).

    Article  CAS  Google Scholar 

  25. Rosair, G. M., Welch, A. J. & Weller, A. S. Sterically encumbered, charge-compensated metallacarboranes. Synthesis and structures of ruthenium pentamethylcyclopentadienyl derivatives. Organometallics 17, 3227–3235 (1998).

    Article  CAS  Google Scholar 

  26. Mueller, J., Base, K., Magnera, T. F. & Michl, J. Rigid-rod oligo-p-carboranes for molecular tinkertoys. An inorganic Langmuir–Blodgett film with a functionalized outer surface. J. Am. Chem. Soc. 114, 9721–9722 (1992).

    Article  CAS  Google Scholar 

  27. Batsanov, A. S. et al. Sulfur, tin and gold derivatives of 1-(2′-pyridyl)-ortho-carborane, 1-R-2-X-1,2-C2B10H10 (R=2′-pyridyl, X=SH, SnMe3 or AuPPh3). Dalton Trans. 3822–3828 (2004).

  28. Saxena, A. K. & Hosmane, N. S. Recent advances in the chemistry of carborane metal complexes incorporating d- and f-block elements. Chem. Rev. 93, 1081–1124 (1993).

    Article  CAS  Google Scholar 

  29. Jin, G.-X. Advances in the chemistry of organometallic complexes with 1,2-dichalcogenolato o-carborane ligands. Coord. Chem. Rev. 248, 587–602 (2004).

    Article  CAS  Google Scholar 

  30. Spokoyny, A. M. et al. Carborane-based pincers: synthesis and structure of SeBSe and SBS Pd(II) complexes. J. Am. Chem. Soc. 131, 9482–9483 (2009).

    Article  CAS  Google Scholar 

  31. van der Vlugt, J. I. Boryl-based pincer systems: new avenues in boron chemistry. Angew. Chem. Int. Ed. 49, 252–255 (2010).

    Article  CAS  Google Scholar 

  32. Farrell, J. R., Mirkin, C. A., Guzei, I. A., Liable-Sands, L. M. & Rheingold, A. L. The weak-link approach to the synthesis of inorganic macrocycles. Angew. Chem. Int. Ed. 37, 465–467 (1998).

    Article  CAS  Google Scholar 

  33. Jeffrey, J. C. & Rauchfuss, T. B. Metal complexes of hemilabile ligands. Reactivity and structure of dichlorobis(o-(diphenilphosphino)anisole)ruthenium(II). Inorg. Chem. 18, 2658–2666 (1979).

    Article  CAS  Google Scholar 

  34. Moxman, G. L. et al. Second-generation catalyst for intermolecular hydroacylation of alkenes and alkynes using β-S-substituted aldehydes: the role of a hemilabile P–O–P ligand. Angew. Chem. Int. Ed. 45, 7618–7622 (2006).

    Article  Google Scholar 

  35. Lindner, R., van der Bosch, B., Lutz, M., Reek, J. N. H. & van der Vlugt, J. I. Tunable hemilabile ligands for adaptive transition metal complexes. Organometallics 30, 499–510 (2011).

    Article  CAS  Google Scholar 

  36. Gianneschi, N. C. et al. A supramolecular approach to an allosteric catalyst. J. Am. Chem. Soc. 125, 10508–10509 (2003).

    Article  CAS  Google Scholar 

  37. Yoon, H. J., Kuwabara, J., Kim, J.-H., & Mirkin, C. A. Allosteric supramolecular triple-layer catalysts. Science 330, 66–69 (2010).

    Article  CAS  Google Scholar 

  38. Rosen, M. S. et al. The chelating effect as a driving force for the selective formation of heteroligated Pt(II) complexes with bidentate phosphino-chalcoether ligands. Inorg. Chem. 50, 1411–1419 (2011).

    Article  CAS  Google Scholar 

  39. Plešek, J., Heřmánek, S. & Štíbr, B. Electron-transfer phenomena in isolated icosahedral borane units. J. Less Common Met. 67, 225–228 (1979).

    Article  Google Scholar 

  40. Baše, T. et al. Carboranethiol-modified gold surfaces. A study and comparison of modified cluster and flat surfaces. Langmuir 21, 7776–7785 (2005).

    Article  Google Scholar 

  41. Hohman, J. N. et al. Self-assembly of carboranethiol isomers on Au{111}: intermolecular interactions determined by molecular dipole orientations. ACS Nano 3, 527–536 (2009).

    Article  CAS  Google Scholar 

  42. Lyubimov, S. E. et al. Chiral carborane-derived thiophosphites: a new generation of ligands for Rh-catalyzed asymmetric hydrogenation. J. Organomet. Chem. 693, 3689–3691 (2008).

    Article  CAS  Google Scholar 

  43. Tsuboya, N. et al. Nonlinear optical properties of novel carborane-ferrocene conjugated dyads. Electron-withdrawing characteristics of carboranes. J. Mater. Chem. 12, 2701–2705 (2002).

    Article  CAS  Google Scholar 

  44. Fabre, B., Clark, J. C. & Vicente, M. G. H. Synthesis and electrochemistry of carboranylpyrroles. Towards preparation of electrochemically and thermally resistant conjugated polymers. Macromolecules 39, 112–119 (2006).

    Article  CAS  Google Scholar 

  45. Garrou, P. E. ΔR ring contributions to 31P NMR parameters of transition-metal–phosphorus chelate complexes. Chem. Rev. 81, 229–266 (1981).

    Article  CAS  Google Scholar 

  46. Cobley, C. J. & Pringle, P. G. Probing the bonding of phosphines and phosphites to platinum by NMR. Correlations of 1J(PtP) and Hammett substituent constants for phosphites and phosphines coordinated to platinum(II) and platinum(0). Inorg. Chim. Acta 265, 107–115 (1997).

    CAS  Google Scholar 

  47. Hassan, F. S. M., McEwan, D. M., Pringle, P. G. & Shaw, B. L. Synthetic and nuclear magnetic resonance studies on dialkyl- and diarylplatinum complexes containing chelating, monodentate, or bridging Ph2PCH2PPh2 ligands. J. Chem. Soc. Dalton Trans. 1501–1506 (1985).

  48. Patai, S. & Rappoport, Z. (eds) The Chemistry of Organic Selenium and Tellurium Compounds Vol. 1 (John Wiley & Sons, 1986).

    Book  Google Scholar 

  49. Maulana, I., Lonnecke, P. & Hey-Hawkins, E. Platinum(II) and palladium(II) complexes of chiral P–Cl functionalized bis-phosphino ortho-carboranes. Inorg. Chem. 48, 8638–8645 (2009).

    Article  CAS  Google Scholar 

  50. Sevryugina, Y., Julius, R. L. & Hawthorne, M. F. Novel approach to aminocarboranes by mild amidation of selected iodo-carboranes. Inorg. Chem. 49, 10627–10634 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (NSF), the Army Research Office (ARO), the Defense Threat Reduction Agency (DTRA), and the Air Force Office of Scientific Research (AFOSR) (through a Multidisciplinary University Research Initiative (MURI) award). A.M.S. is grateful to the Department of Education for a Graduate Assistance in Areas of National Need (GAANN) Fellowship, and Northwestern University for a Presidential Fellowship. The authors thank the Northwestern University Integrated Molecular Structure Education and Research Center (IMSERC) staff for providing invaluable assistance with analytical instrumentation.

Author information

Authors and Affiliations

Authors

Contributions

A.M.S. originated and developed the concept with C.A.M., who supervised and guided the research. All experiments were designed and performed by A.M.S., C.W.M., D.J.C., M.S.R., M.J.W. and R.D.K. A.M.S. and C.W.M. performed all computational studies. C.L.S., A.A.S. and R.D.K. performed all crystallographic studies. A.M.S. and C.A.M. co-wrote the manuscript. All authors discussed the results and commented on the manuscript during its preparation.

Corresponding author

Correspondence to Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2834 kb)

Supplementary information

Crystallographic data for compound 1a (CIF 38 kb)

Supplementary information

Crystallographic data for compound 1c (CIF 35 kb)

Supplementary information

Crystallographic data for compound 1d (CIF 38 kb)

Supplementary information

Crystallographic data for compound 2a (CIF 37 kb)

Supplementary information

Crystallographic data for compound 2c (CIF 37 kb)

Supplementary information

Crystallographic data for compound 2d (CIF 45 kb)

Supplementary information

Crystallographic data for compound 2f (CIF 20 kb)

Supplementary information

Crystallographic data for compound 2g (CIF 16 kb)

Supplementary information

Crystallographic data for compound 3i-BF4 (CIF 25 kb)

Supplementary information

Crystallographic data for compound 4a (CIF 70 kb)

Supplementary information

Crystallographic data for compound 4b (CIF 139 kb)

Supplementary information

Crystallographic data for compound 4c (CIF 140 kb)

Supplementary information

Crystallographic data for compound 4d (CIF 148 kb)

Supplementary information

Crystallographic data for compound 4e (CIF 29 kb)

Supplementary information

Crystallographic data for compound 4f (CIF 67 kb)

Supplementary information

Crystallographic data for compound 4g (CIF 53 kb)

Supplementary information

Crystallographic data for compound 4h (CIF 49 kb)

Supplementary information

Crystallographic data for compound 4i (CIF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spokoyny, A., Machan, C., Clingerman, D. et al. A coordination chemistry dichotomy for icosahedral carborane-based ligands. Nature Chem 3, 590–596 (2011). https://doi.org/10.1038/nchem.1088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1088

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing