Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An efficient synthesis of loline alkaloids

Subjects

Abstract

Loline (1) is a small alkaloid that, in spite of its simple-looking structure, has posed surprising challenges to synthetic chemists. It has been known for more than a century and has been the subject of extensive biological investigations, but only two total syntheses have been achieved to date. Here, we report an asymmetric total synthesis of loline that, with less then ten steps, is remarkably short. Our synthesis incorporates a Sharpless epoxidation, a Grubbs olefin metathesis and an unprecedented transannular aminobromination, which converts an eight-membered cyclic carbamate into a bromopyrrolizidine. The synthesis is marked by a high degree of chemo- and stereoselectivity and gives access to several members of the loline alkaloid family. It delivers sufficient material to support a programme aimed at studying the complex interactions between plants, fungi, insects and bacteria brokered by loline alkaloids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loline alkaloids.
Figure 2: Short total synthesis of loline alkaloids.
Figure 3: Mechanism of the key step.
Figure 4: Synthesis and X-ray structure of temuline carbamate.

Similar content being viewed by others

References

  1. Trost, B. M. The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  Google Scholar 

  2. Wender, P. A. & Miller, B. L. Synthesis at the molecular frontier. Nature 460, 197–201 (2009).

    Article  CAS  Google Scholar 

  3. Young, I. S. & Baran, P. S. Protecting-group-free synthesis as an opportunity for invention. Nature Chem. 1, 193–205 (2009).

    Article  CAS  Google Scholar 

  4. Baran, P. S., Maimone, T. J. & Richter, J. M. Total synthesis of marine natural products without using protecting groups. Nature 446, 404–408 (2007).

    Article  CAS  Google Scholar 

  5. Burns, N. Z., Baran, P. S. & Hoffmann, R. W. Redox economy in organic synthesis. Angew. Chem. Int. Ed. 48, 2854–2867 (2009).

    Article  CAS  Google Scholar 

  6. Hofmeister, F. The active constituents of lolium temulentum. Arch. Exp. Pathol. Pharmakol. 30, 203–230 (1892).

    Article  Google Scholar 

  7. Dannhardt, G. & Steindl, L. Alkaloids of Lolium temulentum—isolation, identification and pharmacological activity. Planta Med. 51, 212–214 (1985).

    Article  Google Scholar 

  8. Robbins, J. D., Sweeny, J. G., Wilkinson, S. R. & Burdick, D. Volatile alkaloids of Kentucky 31 tall fescue seed (Festuca arundinancea). J. Agric. Food Chem. 20, 1040–1043 (1972).

    Article  CAS  Google Scholar 

  9. Schardl, C. L., Grossman, R. B., Nagabhyru, P., Faulkner, J. R. & Mallik, U. P. Loline alkaloids: currencies of mutualism. Phytochemistry 68, 980–996 (2007).

    Article  CAS  Google Scholar 

  10. Takeda, A., Suzuki, E., Kamei, K. & Nakata, H. Detection and identification of loline and its analogues in horse urine. Chem. Pharm. Bull. 39, 964–968 (1991).

    Article  CAS  Google Scholar 

  11. Batirov, E. K., Malikov, V. M. & Yunusov, S. Y. Lolidine—a new chlorine-containing alkaloid from the seeds of Lolium cuneatum. Chem. Nat. Prod. 12, 52–54 (1977).

    Google Scholar 

  12. Magano, J. Synthetic approaches to the neuraminidase inhibitors zanamivir (relenza) and oseltamivir phosphate (Tamiflu) for the treatment of influenza. Chem. Rev. 109, 4398–4438 (2009).

    Article  CAS  Google Scholar 

  13. Olivo, H. F. & Hemenway, M. S. Recent synthesis of epibatidine. A review. Org. Prep. Proced. Int. 34, 1–25 (2002).

    Article  CAS  Google Scholar 

  14. Sakaguchi, H., Tokuyama, H. & Fukuyama, T. Stereocontrolled total synthesis of (−)-kainic acid. Org. Lett. 9, 1635–1638 (2007).

    Article  CAS  Google Scholar 

  15. Glass, R. S., Deardorff, D. R. & Gains, L. H. Pyrrolizidine synthesis by intramolecular cyclization of a substituted azacyclooctane-4,5-oxide. Tetrahedron Lett. 19, 2965–2968 (1978).

    Article  Google Scholar 

  16. Wilson, S. R., Sawicki, R. A. & Huffman, J. C. Synthetic and structural studies of the lolium alkaloids. J. Org. Chem. 46, 3887–3891 (1981).

    Article  CAS  Google Scholar 

  17. Tufariello, J. J., Meckler, H. & Winzenberg, K. Synthesis of the lolium alkaloids. J. Org. Chem. 51, 3556–3557 (1986).

    Article  CAS  Google Scholar 

  18. Blakemore, P. R., Schulze, V. K. & White, J. D. Asymmetric synthesis of (+)-loline. Chem. Commun. 1263–1264 (2000).

  19. Blakemore, P. R., Kim, S.-K., Schulze, V. K., White, J. D. & Yokochi, A. F. T. Asymmetric synthesis of (+)-loline, a pyrrolizidine alkaloid from rye grass and tall fescue. J. Chem. Soc. Perkin Trans. 1 1831–1845 (2001).

  20. Hovey, M. T., Eklund, E. J., Pike, R. D., Mainkar, A. A. & Scheerer, J. R. Synthesis of (±)-acetylnorloline via stereoselective tethered aminohydroxylation. Org. Lett. 13, 1246–1249 (2011).

    Article  CAS  Google Scholar 

  21. Schreiber, S. L., Schreiber, T. S. & Smith, D. B. Reactions that proceed with a combination of enantiotopic group and diastereotopic face selectivity can deliver products with very high enantiomeric excess: experimental support of a mathematical model. J. Am. Chem. Soc. 109, 1525–1529 (1987).

    Article  CAS  Google Scholar 

  22. Smith, D. B., Zhaoyin, W. & Schreiber, S. L. The asymmetric epoxidation of divinyl carbinols: theory and applications. Tetrahedron 46, 4793–4808 (1990).

    Article  CAS  Google Scholar 

  23. Wernerova, M. & Hudlicky, T. On the practical limits of determining isolated product yields and ratios of stereoisomers: reflections, analysis, and redemption. Synlett. 2701–2707 (2010).

  24. Wilson, S. R. & Sawicki, R. A. Transannular cyclizations of 1-aza-4-cyclooctene. J. Org. Chem. 44, 287–291 (1979).

    Article  CAS  Google Scholar 

  25. Wilson, S. R. & Sawicki, R. A. The synthesis of hemiloline: 3-aza-9-oxabrendane. Tetrahedron Lett. 19, 2969–2972 (1978).

    Article  Google Scholar 

  26. Neda, I., Kaukorat, T. & Fischer, A. K. Unusual stabilization of 1,2-diamino derivatives of quincorine and quincoridine by carbon dioxide: persistent crystalline prim-ammonium-carbamate salts and their reactivity towards isatoic acid anhydride. Eur. J. Org. Chem. 3784–3790 (2003).

  27. Jo, E. et al. Crystal structure and electronic properties of 2-amino-2-methyl-1-propanol (AMP) carbamate. Chem. Commun. 46, 9158–9160 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank undergraduate participants E. Zeynep Serdar and C. Hieke, and thank E. Lauterwasser, E. Downs-Beaulieu and C.A. Kuttruff for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.C. and D.T. conceived the synthetic route and wrote the manuscript. M.C. conducted the experimental work, analysed the results and wrote the Supplementary Information. P.M. solved the crystal structures.

Corresponding author

Correspondence to Dirk Trauner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1996 kb)

Supplementary information

Crystallographic data for compound 14 (CIF 15 kb)

Supplementary information

Crystallographic data for compound 20 (CIF 19 kb)

Supplementary information

Crystallographic data for compound 22 (CIF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cakmak, M., Mayer, P. & Trauner, D. An efficient synthesis of loline alkaloids. Nature Chem 3, 543–545 (2011). https://doi.org/10.1038/nchem.1072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing