Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light-induced spin-crossover magnet

Abstract

The light-induced phase transition between the low-spin (LS) and high-spin (HS) states of some transition-metal ions has been extensively studied in the fields of chemistry and materials science. In a crystalline extended system, magnetically ordering the HS sites of such transition-metal ions by irradiation should lead to spontaneous magnetization. Previous examples of light-induced ordering have typically occurred by means of an intermetallic charge transfer mechanism, inducing a change of valence of the metal centres. Here, we describe the long-range magnetic ordering of the extended FeII(HS) sites in a metal–organic framework caused instead by a light-induced excited spin-state trapping effect. The Fe–Nb-based material behaves as a spin-crossover magnet, in which a strong superexchange interaction (magnetic coupling through non-magnetic elements) between photo-produced FeII(HS) and neighbouring NbIV atoms operates through CN bridges. The magnetic phase transition is observed at 20 K with a coercive field of 240 Oe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of Fe2[Nb(CN)8]·(4-pyridinealdoxime)8·2H2O.
Figure 2: Spin-crossover transition phenomenon.
Figure 3: Photo-induced magnetization caused by light-induced spin-crossover.
Figure 4: Mechanism of light-induced spin-crossover ferromagnetism.

Similar content being viewed by others

References

  1. Gütlich, P. & Goodwin, H. A. (eds.) Spin crossover in transition metal compounds I, II, III. Top. Curr. Chem. 233–235 (2004).

  2. König, E. Structural changes accompanying continuous and discontinuous spin-state transitions. Prog. Inorg. Chem. 35, 527–622 (1987).

    Google Scholar 

  3. Cambi, L. & Szego, L. Über die magnetische Susceptibilität der komplexen Verbindungen. Ber. Dtsch Ges. 64, 2591–2598 (1931).

    Article  Google Scholar 

  4. Baker, W. A. & Bobonich, H. M. Magnetic properties of some high-spin complex of iron(II). Inorg. Chem. 3, 1184–1188 (1964).

    Article  CAS  Google Scholar 

  5. Kahn, O. & Martinez, C. J. Spin-transition polymers: from molecular materials toward memory devices. Science 279, 44–48 (1998).

    Article  CAS  Google Scholar 

  6. Real, J. A. et al. Spin crossover in a catenane supramolecular system. Science 268, 265–267 (1995).

    Article  CAS  Google Scholar 

  7. Létard, J. F. et al. Wide thermal hysteresis for the mononuclear spin-crossover compound cis-bis(thiocyanato)bis[N-(2′-pyridylmethylene)-4-(phenylethynyl)anilino]iron(II). J. Am. Chem. Soc. 119, 10861–10862 (1997).

    Article  Google Scholar 

  8. Boukheddaden, K., Shteto, I., Hoo, B. & Varret, F. Dynamical model for spin-crossover solids. I. Relaxation effects in the mean-field approach. Phys. Rev. B 62, 14796–14805 (2000).

    Article  CAS  Google Scholar 

  9. Bousseksou, A., Molnár, G., Demont, P. & Menegotto, J. Observation of a thermal hysteresis loop in the dielectric constant of spin crossover complexes: towards molecular memory devices. J. Mater. Chem. 13, 2069–2071 (2003).

    Article  CAS  Google Scholar 

  10. Niel, V. et al. Crystalline-state reaction with allosteric effect in spin-crossover, interpenetrated networks with magnetic and optical bistability. Angew. Chem. Int. Ed. 42, 3760–3763 (2003).

    Article  CAS  Google Scholar 

  11. Halder, G. J., Kepert, C. J., Moubaraki, B., Murray, K. S. & Cashion, J. D. Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298, 1762–1765 (2002).

    Article  CAS  Google Scholar 

  12. Gaspar, A. B., Seredyuk, M. & Gütlich, P. Spin crossover in metallomesogens. Coord. Chem. Rev. 253, 2399–2413 (2009).

    Article  CAS  Google Scholar 

  13. Arai, M., Kosaka, W., Matsuda, T. & Ohkoshi, S. Observation of an Fe(II) spin-crossover in an iron octacyanoniobate-based magnet. Angew. Chem. Int. Ed. 47, 6885–6887 (2008).

    Article  CAS  Google Scholar 

  14. Decurtins, S., Gütlich, P., Köhler, C. P., Spiering, H. & Hauser, A. Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole–iron(II) tetrafluoroborate spin-crossover system. Chem. Phys. Lett. 105, 1–4 (1984).

    Article  CAS  Google Scholar 

  15. Gütlich, P., Hauser, A. & Spiering, H. Thermal and optical switching of iron(II) complexes. Angew. Chem. Int. Ed. Engl. 33, 2024–2054 (1994).

    Article  Google Scholar 

  16. Nasu, K. Relaxations of Excited States and Photo-Induced Structural Phase Transitions (Springer, 1997).

    Book  Google Scholar 

  17. Létard J. F. et al. Structural, magnetic, and photomagnetic studies of a mononuclear iron(II) derivative exhibiting an exceptionally abrupt spin transition. Light-induced thermal hysteresis phenomenon. Inorg. Chem. 37, 4432–4441 (1998).

    Article  Google Scholar 

  18. Ogawa, Y. et al. Dynamical aspects of the photoinduced phase transition in spin-crossover complexes. Phys. Rev. Lett. 84, 3181–3184 (2000).

    Article  CAS  Google Scholar 

  19. Renz, F. et al. Strong field iron (II) complex converted by light into a long-lived high-spin state. Angew. Chem. Int. Ed. 39, 3699–3700 (2000).

    Article  CAS  Google Scholar 

  20. Ould-Moussa, N. et al. Wavelength selective light-induced magnetic effects in the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpym)}. Phys. Rev. B 75, 054101 (2007).

    Article  Google Scholar 

  21. Ould-Moussa, N. et al. Selective photoswitching of the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpm)} into two distinct macroscopic phases. Phys. Rev. Lett. 94, 107205 (2005).

    Article  Google Scholar 

  22. Breuning, E. et al. Spin crossover in a supramolecular Fe4II [2×2] grid triggered by temperature, pressure, and light. Angew. Chem. Int. Ed. 39, 2504–2507 (2000).

    Article  CAS  Google Scholar 

  23. Nishihara, T., Nihei, M., Oshio, H. & Tanaka, K. The light-induced spin transition of tetranuclear spin crossover complex [Fe4(CN)4(bpy)4(tpa)2](PF6)4 . J. Phys.: Confer. Ser. 148, 012033 (2009).

    Google Scholar 

  24. Teale, R. W. & Temple, D. W. Photomagnetic anneal, a new magneto-optic effect, in Si-doped yittrium iron garnet. Phys. Rev. Lett. 19, 904–905 (1967).

    Article  CAS  Google Scholar 

  25. Enz, U. & Van der Heide, H. Two new manifestations of the photomagnetic effect. Solid State Commun. 6, 347–349 (1968).

    Article  CAS  Google Scholar 

  26. Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. Photoinduced magnetization of a cobalt-iron cyanide. Science 272, 704–705 (1996).

    Article  CAS  Google Scholar 

  27. Shimamoto, N., Ohkoshi, S., Sato, O. & Hashimoto, K. Control of charge-transfer-induced spin transition temperature on cobalt–iron prussian blue analogues. Inorg. Chem. 41, 678–684 (2002).

    Article  CAS  Google Scholar 

  28. Ohkoshi, S. et al. Photoinduced magnetization in copper octacyanomolybdate. J. Am. Chem. Soc. 128, 270–277 (2006).

    Article  CAS  Google Scholar 

  29. Tokoro, H. et al. Visible-light-induced reversible photomagnetism in rubidium manganese hexacyanoferrate. Chem. Mater. 20, 423–428 (2008).

    Article  CAS  Google Scholar 

  30. Ohkoshi, S., Einaga, Y., Fujishima, A. & Hashimoto, K. Magnetic properties and optical control of electrochemically prepared iron–chromium polycyanides. J. Electroanal. Chem. 473, 245–249 (1999).

    Article  CAS  Google Scholar 

  31. Arimoto, Y., Ohkoshi, S., Zhong, Z. J., Seino, H., Mizobe, Y. & Hashimoto K. Photoinduced magnetization in a two-dimensional cobalt octacyanotungstate. J. Am. Chem. Soc. 125, 9240–9241 (2003).

    Article  CAS  Google Scholar 

  32. Ohkoshi, S., Ikeda, S., Hozumi, T., Kashiwagi, T. & Hashimoto, K. Photoinduced magnetization with a high Curie temperature and a large coercive field in a cyano-bridged cobalt–tungstate bimetallic assembly. J. Am. Chem. Soc. 128, 5320–5321 (2006).

    Article  CAS  Google Scholar 

  33. Ohkoshi, S. & Hashimoto, K. Design of a novel magnet exhibiting photoinduced magnetic pole inversion based on molecular field theory. J. Am. Chem. Soc. 121, 10591–10597 (1999).

    Article  CAS  Google Scholar 

  34. Bozdag, K. D. et al. Optical control of magnetization in a room-temperature magnet: V–Cr Prussian blue analog. Phys. Rev. B 82, 094449 (2010).

    Article  Google Scholar 

  35. Yoo, J.-W., Edelstein, R. S., Lincoln, D. M., Raju, N. P. & Epstein, A. J. Photoinduced magnetism and random magnetic anisotropy in organic-based magnetic semiconductor V(TCNE)x films, for x~2. Phys. Rev. Lett. 99, 157205 (2007).

    Article  Google Scholar 

  36. Bénard, S., Rivière, E., Yu, P., Nakatani, K. & Delouis, J. F. A photochromic molecule-based magnet. Chem. Mater. 13, 159–162 (2001).

    Article  Google Scholar 

  37. Kida, N. et al. Control of charge transfer phase transition and ferromagnetism by photoisomerization of spiropyran for an organic–inorganic hybrid system, (SP)[FeIIFeIII(dto)3] (SP = spiropyran, dto = C2O2S2). J. Am. Chem. Soc. 131, 212–220 (2009).

    Article  CAS  Google Scholar 

  38. Morimoto, M., Miyasaka, H., Yamashita, M. & Irie, M. Coordination assemblies of [Mn4] single-molecule magnets linked by photochromic ligands: photochemical control of the magnetic properties. J. Am. Chem. Soc. 131, 9823–9835 (2009).

    Article  CAS  Google Scholar 

  39. Venkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. & Herges, R. Magnetic bistability of molecules in homogeneous solution at room temperature. Science 331, 445–448 (2010).

    Article  Google Scholar 

  40. Koshihara, S. et al. Ferromagnetic order induced by photogenerated carriers in magnetic IIIV semiconductor heterostructures of (In,Mn)As/GaSb. Phys. Rev. Lett. 78, 4617–4620 (1997).

    Article  CAS  Google Scholar 

  41. Sieklucka, B. et al. Towards high Tc octacyanometalate-based networks. CrystEngComm. 11, 2032–2039 (2009).

    Article  CAS  Google Scholar 

  42. Pinkowicz, D. et al. Magnetic spongelike behavior of 3D ferromagnetic {[MnII(imH)]2[NbIV(CN)8]}n with Tc=62 K. Inorg. Chem. 47, 9745–9747 (2008).

    Article  CAS  Google Scholar 

  43. Kosaka, W., Imoto, K., Tsunobuchi, Y. & Ohkoshi S. Vanadium octacyanoniobate-based magnet with a Curie temperature of 138 K. Inorg. Chem. 48, 4604–4606 (2009).

    Article  CAS  Google Scholar 

  44. Herrera, J. M. et al. Three-dimensional bimetallic octacyanidometalates [MIV{(μ-CN)4MnII(H2O)2}2·4H2O]n (M = Nb, Mo, W): synthesis, single-crystal X-ray diffraction and magnetism. C. R. Chimie 11, 1192–1199 (2008).

    Article  CAS  Google Scholar 

  45. Kahn, O. Molecular Magnetism (VCH, 1993).

    Google Scholar 

  46. Brown, D. B. Mixed Valence Compounds (NATO ASI, 1980).

    Book  Google Scholar 

  47. Prassides, K. Mixed Valency Systems: Applications in Chemistry, Physics and Biology (NATO ASI, 1991).

    Book  Google Scholar 

  48. Robin M. B. & Day P. Mixed valence chemistry—a survey and classification. Adv. Inorg. Chem. Radiochem. 10, 247–422 (1967).

    Article  CAS  Google Scholar 

  49. Hennig, H., Rehorek, A., Rehorek, D. & Thomas, Ph. Photocatalytic systems. LVIII. Electron transfer in copper(I)/octacyauomolybdate(V) ion pairs generated by IT excitation. Inorg. Chim. Acta 77, L11–L12 (1983).

    Article  CAS  Google Scholar 

  50. Kosaka, W., Nomura, K., Hashimoto, K. & Ohkoshi, S. Observation of an Fe(II) spin-crossover in a cesium iron hexacyanochromate. J. Am. Chem. Soc. 127, 8590–8591 (2005).

    Article  CAS  Google Scholar 

  51. Cheetham, A. K., Férey, G. & Loiseau, T. Open-framework inorganic materials. Angew. Chem. Int. Ed. 38, 3269–3292 (1999).

    Article  Google Scholar 

  52. Eddaoudi, M. et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001).

    Article  CAS  Google Scholar 

  53. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  54. Ferlay, S., Mallah, T., Ouahès, R., Veillet, P. & Verdaguer, M. A room-temperature organometallic magnet based on Prussian blue. Nature 378, 701–703 (1995).

    Article  CAS  Google Scholar 

  55. Verdaguer, M. et al. Room-temperature molecule-based magnets. Phil. Trans. R. Soc. Lond. A 357, 2959–2976 (1999).

    Article  CAS  Google Scholar 

  56. Holmes, S. M. & Girolami, G. S. Sol–gel synthesis of KVII[CrIII(CN)6]·2H2O: a crystalline molecule-based magnet with a magnetic ordering temperature above 100 °C. J. Am. Chem. Soc. 121, 5593–5594 (1999).

    Article  CAS  Google Scholar 

  57. Hatlevik, Ø., Buschmann, W. E., Zhang, J., Manson, J. L. & Miller, J. S. Enhancement of the magnetic ordering temperature and air stability of a mixed valent vanadium hexacyanochromate(III) magnet to 99 °C (372 K). Adv. Mater. 11, 914–918 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Core Research for Evolutional Science and Technology (CREST) project of JST, a Grant-in-Aid for Young Scientists (S) from JSPS, the Global COE Program, ‘Chemistry Innovation through Cooperation of Science and Engineering’ from MEXT Japan, the Photon Frontier Network Program from MEXT, the Izumi Science and Technology Foundation and the Asahi Glass Foundation. The authors are grateful to Kosuke Nakagawa, Koji Nakabayashi and Tomohiro Nuida for their assistance with measurements, and to Wataru Kosaka for help with the synthesis. Acknowledgements are also given to the Cryogenic Research Center, The University of Tokyo and the Center for Nano Lithography & Analysis, The University of Tokyo, supported by MEXT Japan.

Author information

Authors and Affiliations

Authors

Contributions

S.O. designed and coordinated this study, contributed to all measurements and calculations, and wrote the paper. K.I. carried out the synthesis, photo-irradiation measurements and Mössbauer spectroscopy. Y.T. conducted Rietveld analysis. S.T. performed the synthesis and elemental analysis. H.T. carried out photo-irradiation measurements and molecular-field calculations. All authors commented on the manuscript.

Corresponding author

Correspondence to Shin-ichi Ohkoshi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1571 kb)

Supplementary information

Crystallographic data for the Mn-Nb-based metal-organic framework (CIF 24 kb)

Supplementary information

Crystallographic data for the Fe-Nb-based metal-organic framework (CIF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohkoshi, Si., Imoto, K., Tsunobuchi, Y. et al. Light-induced spin-crossover magnet. Nature Chem 3, 564–569 (2011). https://doi.org/10.1038/nchem.1067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing