Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Contemporary strategies for peptide macrocyclization

Abstract

Peptide macrocycles have found applications that range from drug discovery to nanomaterials. These ring-shaped molecules have shown remarkable capacity for functional fine-tuning. Such capacity is enabled by the possibility of adjusting the peptide conformation using the techniques of chemical synthesis. Cyclic peptides have been difficult, and often impossible, to prepare using traditional synthetic methods. For macrocyclization to occur, the activated peptide must adopt an entropically disfavoured pre-cyclization conformation before forming the desired product. Here, we review recent solutions to some of the major challenges in this important area of contemporary synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General synthetic considerations for peptide macrocyclization.
Figure 2: Conformational control to facilitate peptide macrocyclization.
Figure 3: The use of metal ions to assist in the macrocyclization of peptides.
Figure 4: Peptide macrocyclizations mediated through sulfur-containing auxiliaries.
Figure 5: Peptide lactamizations through ring contractions involving larger lactones.
Figure 6: Azide–alkyne cycloadditions in the synthesis of peptide macrocycles.
Figure 7: The use of ring-closing metathesis in the synthesis of peptide macrocycles.
Figure 8: Peptide ring closures mediated by multicomponent reactions.
Figure 9: Strategies for the development of libraries of peptide macrocycles.

Similar content being viewed by others

References

  1. Tyndall, J. D. A., Nall, T. & Fairlie, D. P. Proteases universally recognize beta strands in their active sites. Chem. Rev. 105, 973–999 (2005).

    CAS  PubMed  Google Scholar 

  2. Gause, G. F. & Brazhnikova, M. G. Gramicidin S and its use in the treatment of infected wounds. Nature 154, 703 (1944).

    Google Scholar 

  3. Sewald, N. & Jakube, H–D . Peptides: Chemistry and Biology (Wiley-VCH, 2009).

    Google Scholar 

  4. Haubner, R. et al. Cyclic RGD peptides containing β-turn mimetics. J. Am. Chem. Soc. 118, 7881–7891 (1996).

    CAS  Google Scholar 

  5. Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. The exploration of macrocycles for drug discovery — an underexploited structural class. Nature Rev. Drug Disc. 7, 608–624 (2008).

    CAS  Google Scholar 

  7. Clark, R. J. & Craik, D. J. Native chemical ligation applied to the synthesis and bioengineering of circular peptides and proteins. Biopolymers 94, 414–422 (2010).

    CAS  PubMed  Google Scholar 

  8. Jiang, S., Li, Z., Ding, K. & Roller, P. Recent progress of synthetic studies to peptide and peptidomimetic cyclization. Curr. Org. Chem. 12, 1502–1542 (2008).

    CAS  Google Scholar 

  9. Katsara, M. et al. Round and round we go: cyclic peptides in disease. Curr. Med. Chem. 13, 2221–2232 (2006).

    CAS  PubMed  Google Scholar 

  10. Davies, J. S. The cyclization of peptides and depsipeptides. J. Pept. Sci. 9, 471–501 (2003).

    CAS  PubMed  Google Scholar 

  11. Lambert, J. N., Mitchell, J. P. & Roberts, K. A. The synthesis of cyclic peptides. J. Chem. Soc. Perkin Trans. 1 5, 471–484 (2001).

    Google Scholar 

  12. Montalbetti, C. A. G. N. & Falque, V. Amide bond formation and peptide coupling. Tetrahedron 61, 10827–10852 (2005).

    CAS  Google Scholar 

  13. Parenty, A., Moreau, X. & Campagne, J-M. Macrolactonizations in the total synthesis of natural products. Chem. Rev. 106, 911–939 (2006).

    CAS  PubMed  Google Scholar 

  14. Lunquist, J. T. IV & Pelletier, J. C. A new tri-orthogonal strategy for peptide cyclization. Org. Lett. 4, 3219–3221 (2002).

    Google Scholar 

  15. Malesevic, M., Strijowski, U., Bächle, D. & Sewald, N. An improved method for the solution cyclization of peptides under pseudo-high dilution conditions. J. Biotech. 112, 73–77 (2004).

    CAS  Google Scholar 

  16. Scott, L. T., Rebek, J., Ovsyanko, L. & Sims, C. Organic chemistry on the solid phase. Site-site interactions on functionalized polystyrene. J. Am. Chem. Soc. 99, 626–627 (1977).

    Google Scholar 

  17. Mazur, S. & Jayalekshmy, P. Chemistry of polymer-bound o-benzyne. Frequency of encounter between substituents on cross-linked polystyrenes. J. Am. Chem. Soc. 101, 677–683 (1979).

    CAS  Google Scholar 

  18. Kates, S. A. et al. A novel, convenient, three-dimensional orthogonal strategy for solid-phase synthesis of cyclic peptides. Tetrahedron Lett. 34, 1549–1552 (1993).

    CAS  Google Scholar 

  19. Alcaro, M. C. et al. On-resin head-to-tail cyclization of cyclotetrapeptides: optimization of crucial parameters. J. Pept. Sci. 10, 218–228 (2004).

    CAS  PubMed  Google Scholar 

  20. Punna, S., Kuzelka, J., Wang, Q. & Finn, M. G. Head-to-tail peptide cyclodimerization by copper-catalyzed azide-alkyne cycloaddition. Angew. Chem. Int. Ed. 44, 2215–2220 (2005).

    CAS  Google Scholar 

  21. Gilon, C., Mang, C., Lohorf, E., Friedler, A. & Kessler, H. Synthesis of Peptides and Peptidomimetics E22b Ch. 6.8 (Thieme, 2004)

    Google Scholar 

  22. Schmidt, U. & Langner, J. Cyclotetrapeptides and cyclopentapeptides: occurrence and synthesis. J. Pept. Res. 49, 67–73 (1997).

    CAS  PubMed  Google Scholar 

  23. Humphrey, J. M. & Chamberlin, A. R. Chemical synthesis of natural product peptides: coupling methods for incorporation of noncoded amino acids into peptides. Chem. Rev. 97, 2243–2266 (1997).

    CAS  PubMed  Google Scholar 

  24. Hardy, P. M., Kenner, G. W. & Sheppard, R. C. Effects of configuration on dielectric increments and cyclization of some simple peptides. Tetrahedron 19, 95–105 (1963).

    CAS  Google Scholar 

  25. Hoffmann, R. W. Flexible molecules with defined shape-conformational design. Angew. Chem. Int. Ed. 31, 1124–1134 (1992).

    Google Scholar 

  26. Blankenstein, J. & Zhu, J. Conformation-directed macrocyclization reactions. Eur. J. Org. Chem. 1949–1964 (2005).

  27. Cavelier-Frontin, F., Pèpe, G., Verducci, J., Siri, D. & Jacquier, R. Prediction of the best linear precursor in the synthesis of cyclotetrapeptides by molecular mechanic calculations. J. Am. Chem. Soc. 114, 8885–8890 (1992).

    CAS  Google Scholar 

  28. Daidone, I., Neuweiler, H., Doose, S., Sauer, M. & Smith, J. C. Hydrogen-bond driven loop-closure kinetics in unfolded polypeptide chains. PLOS Comput. Biol. 6, 276–288 (2010).

    Google Scholar 

  29. Smith, J. A. & Pease, L. G. Reverse turns in peptides and proteins. CRC Crit.Rev. Biochem. 8, 315–399 (1980).

    CAS  PubMed  Google Scholar 

  30. Rothe, M., Steffen, K–D. & Rothe, I. Synthesis of cyclotri-L-prolyl, a cyclotripeptide having a nine-membered ring. Angew. Chem. Int. Ed. 4, 356 (1965).

    Google Scholar 

  31. Favre, M., Moehle, K., Jiang, L., Pfieffer, B. & Robinson, J. A. Structural mimicry of canonical conformations in antibody hypervariable loops using cyclic peptides containing a heterochiral diproline template. J. Am. Chem. Soc. 121, 2679–2685 (1999).

    CAS  Google Scholar 

  32. Kessler, H. & Haase, B. Cyclic hexapeptides derived from the human thympoietin II. Int. J. Peptide Protein Res. 39, 36–40 (1992).

    CAS  Google Scholar 

  33. Tamaki, M., Akabori, S. & Muramatsu, I. Biomimetic synthesis of Gramicidin S. Direct formation of the antibiotic from pentapeptide active esters having no protecting group on the side chain of the Orn residue. J. Am. Chem. Soc. 115, 10492–10496 (1993).

    CAS  Google Scholar 

  34. Brady, S. F. et al. Practical synthesis of cyclic peptides, with an example of dependence of cyclization yield upon linear sequence. J. Org. Chem. 44, 3101–3105 (1979).

    CAS  Google Scholar 

  35. Ehrlich, A. et al. Cyclization of all-L-pentapeptides by means of 1-hydroxy-7-azabenzotriazole-derived uranium and phosphonium reagents. J. Org. Chem. 61, 8831–8838 (1996).

    CAS  PubMed  Google Scholar 

  36. Yongye, A. B. et al. Modeling of peptides containing D-amino acids: implications on cyclization. J. Comput. Aided Mol. Des. 23, 677–689 (2009).

    CAS  PubMed  Google Scholar 

  37. Takeuchi, Y. & Marshall, G. R. Conformational analysis of reverse-turn constraints by N-methylation and N-hydroxylation of amide bonds in peptides and non-peptide mimetics. J. Am. Chem. Soc. 120, 5363–5372 (1998).

    CAS  Google Scholar 

  38. Chatterjee, J., Mierke, D. F. & Kessler, H. N-methylated cyclic pentaalanine peptides as template structures. J. Am. Chem. Soc. 128, 15164–15172 (2006).

    CAS  PubMed  Google Scholar 

  39. Chatterjee, J., Mierke, D. F. & Kessler, H. Conformational preference and potential templates of N-methylated cyclic pentaalanine peptides. Chem. Eur. J. 14, 1508–1517 (2008).

    CAS  PubMed  Google Scholar 

  40. Deng, S. & Taunton, J. Kinetic control of proline amide rotamers: Total synthesis of trans, trans- and cis, cis-ceratospongamide. J. Am. Chem. Soc. 124, 916–917 (2002).

    CAS  PubMed  Google Scholar 

  41. Wöhr, T. et al. Pseudo-prolines as a solubilizing, structure-disrupting protection technique in peptide synthesis. J. Am. Chem. Soc. 118, 9218–9227 (1996).

    Google Scholar 

  42. Dumy, P. et al. Pseudo-prolines as a molecular hinge: reversible induction of cis amide bonds into peptide backbones. J. Am. Chem. Soc. 119, 918–925 (1997).

    CAS  Google Scholar 

  43. Rückle, T., de Lavallaz, P., Keller, M., Dumy, P. & Mutter, M. Pseudo-prolines in cyclic peptides: Conformational stabilization of cyclo[Pro-Thr(ΨMe, Mepro)-Pro]. Tetrahedron 55, 11281–11288 (1999).

    Google Scholar 

  44. Skropeta, D., Jolliffe, K. A. & Turner, P. Pseudoprolines as removable turn inducers: tools for the cyclization of small peptides. J. Org. Chem. 69, 8804–8809 (2004).

    CAS  PubMed  Google Scholar 

  45. Fairweather, K. A., Sayyadi, N., Luck, I. J., Clegg, J. K. & Jolliffe, K. A. Synthesis of all-L cyclic tetrapeptides using pseudoprolines as removable turn inducers. Org. Lett. 12, 3136–3139 (2010).

    CAS  PubMed  Google Scholar 

  46. Amore, A. et al. Carbosilane dendrimeric carbodiimides: site isolation as a lactamization tool. J. Org. Chem. 71, 1851–1860 (2006).

    CAS  PubMed  Google Scholar 

  47. Tai, D–F . & Lin, Y–F. Molecularly imprinted cavities template the macrocyclization of tetrapeptides. Chem. Commun. 5598–6000 (2008).

  48. Felnagle, E. A. et al. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharm. 5, 191–211 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kohli, R. M., Walsh, C. T. & Burkart, M. D. Biomimetic synthesis and optimization of cyclic peptide antibiotics. Nature 418, 658–661 (2002).

    CAS  PubMed  Google Scholar 

  50. Goto, Y. et al. Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides ACS Chem. Bio. 3, 120–129 (2008).

    CAS  Google Scholar 

  51. Haas, K., Ponikwar, W., Nöth, H. & Beck W. Facile synthesis of cyclic tetrapeptides from nonactivated peptide esters on metal centers. Angew. Chem. Int. Ed. 37, 1086–1089 (1998).

    CAS  Google Scholar 

  52. Seebach, D., Thaler, A. & Beck, A. K. Solubilization of peptides in non-polar organic solvents by the addition of inorganic salts: facts and implications. Helv. Chim. Acta 72, 857–867 (1989).

    CAS  Google Scholar 

  53. Robey, F. A. Selective and facile cyclization of N-chloroacetylated peptides from the C4 domain of HIV Gp120 in LiCl/DMF solvent systems. J. Pept Res. 56, 115–120 (2000).

    CAS  PubMed  Google Scholar 

  54. Ye, Y.-H., Gao, X.-M., Liu, M., Tang, Y.-C. & Tian, G.-L. Studies of the synthetic methodology of head to tail cyclization of linear peptides. Lett. Pept. Sci. 10, 571–579 (2003).

    Google Scholar 

  55. Liu, M. et al. Cyclization of several linear penta- and heptapeptides with different metal ions studied by CD spectroscopy. J. Pept. Sci. 65, 55–64 (2005).

    CAS  Google Scholar 

  56. Zhang, L. & Tam, J. P. Metal ion-assisted cyclization. Tetrahedron Lett. 38, 4375–4378 (1997).

    CAS  Google Scholar 

  57. Blake, J. & Li, C. H. New segment-coupling method for peptide synthesis in aqueous solution: application to synthesis of human [Gly17]-β-endorphin. Proc. Natl Acad. Sci. USA 78, 4055–4058 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, L. & Tam, J. P. Lactone and lactam library synthesis by silver ion-assisted orthogonal cyclization of unprotected peptides. J. Am. Chem. Soc. 121, 3311–3320 (1999).

    CAS  Google Scholar 

  59. Li, Y., Yongye, A., Giulianotti, M., Martinez-Mayorga, K., Yu, Y. & Houghten, R. A. Synthesis of cyclic peptides through direct aminolysis of peptide tioesters catalyzed by imidazole in aqueous organic solutions. J. Comb. Chem. 11, 1066–1072 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, Y., Giulionatti, M. & Houghten, R. A. Macrolactonization of peptide thioesters catalyzed by imidazole and its application in the synthesis of Kahalalide B and analogues. Org. Lett. 12, 2250–2253 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sasaki, K. & Crich, D. Cyclic peptide synthesis with thioacids. Org. Lett. 12, 3254–3257 (2010).

    CAS  PubMed  Google Scholar 

  62. Felix, A. M., Wang, C.-T., Heimer, E. P. & Fournier, A. Applications of the BOP reagent in solid phase synthesis. Int. J. Pept. Protein Res. 31, 231–238 (1988).

    CAS  Google Scholar 

  63. Aimetti, A. A., Shoemaker, R. K., Lin, C–C. & Anseth, K. S. On-resin peptide macrocyclization using thiol-ene click chemistry. Chem. Commun. 46, 4061–4063 (2010).

    CAS  Google Scholar 

  64. Botti, P., Pallin, D. T. & Tam, J. P. Cyclic peptides from linear unprotected peptide precursors through thiazolidine formation. J. Am. Chem. Soc. 118, 10018–10024 (1996).

    CAS  Google Scholar 

  65. Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. H. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    CAS  PubMed  Google Scholar 

  66. Zhang, L. & Tam, J. P. Synthesis and application of unprotected cyclic peptides as building blocks for peptide dendrimers. J. Am. Chem. Soc. 119, 2363–2370 (1997).

    CAS  Google Scholar 

  67. Camarero, J. A. & Muir, T. W. Chemoselective backbone cyclization of unprotected peptides. Chem. Commun. 1369–1370 (1997).

  68. Tull-Puche, J. & Barany, G. On-resin native chemical ligation for cyclic peptide synthesis. J. Org. Chem. 69, 4101–4107 (2004).

    Google Scholar 

  69. Yan, L. Z. & Dawson, P. E. Design and synthesis of a protein catenane. Angew. Chem. Int. Ed. 40, 3625–3627 (2001).

    CAS  Google Scholar 

  70. Tam, J. P., Lu, Y–A. & Yu, Q. Thia zip reaction for the synthesis of large cyclic peptides: Mechanisms and applications. J. Am. Chem. Soc. 121, 4316–4324 (1999).

    CAS  Google Scholar 

  71. Shao, Y., Lu, W. & Kent, S. B. H. A novel method to synthesize cyclic peptides. Tetrahedron Lett. 39, 3911–3914 (1998).

    CAS  Google Scholar 

  72. Yan, L. Z. & Dawson, P. E. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 123, 526–533 (2001).

    CAS  PubMed  Google Scholar 

  73. Kleineweischede, R. & Hackenberger, C. P. R. Chemoselective peptide cyclization by traceless ligation. Angew. Chem. Int. Ed. 47, 5984–5988 (2008).

    CAS  Google Scholar 

  74. Lécaillon, J., Gilles, P., Subra, G., Martinez J. & Amblard M. Synthesis of cyclic peptides via O-N acyl migration. Tetrehedron Lett. 49, 4674–4676 (2008).

    Google Scholar 

  75. Meutermans, W. D. F. et al. Synthesis of difficult cyclic peptides by inclusion of a novel photolabile auxiliary in a ring contraction strategy. J. Am. Chem. Soc. 121, 9790–9796 (1999).

    CAS  Google Scholar 

  76. Hyde, C., Johnson, T., Owen, D., Quibell, M. & Sheppard, R. C. Some 'difficult sequences' made easy. Int. J. Pept. Protein Res. 43, 431–440 (1994).

    CAS  PubMed  Google Scholar 

  77. Horton, D. A. et al. Cyclic tetrapeptides via the ring contraction strategy: chemical techniques useful for their identification. Org. Biomol. Chem. 6, 1386–1395 (2008).

    CAS  PubMed  Google Scholar 

  78. Meutermans, W. D. F. et al. Difficult macrocyclizations: new strategies for synthesizing highly strained cyclic tetrapeptides. Org. Lett. 5, 2711–2714 (2003).

    CAS  PubMed  Google Scholar 

  79. Bieräugel, H., Schoemaker, H. E., Hiemstra, H. & van Maarseveen, J. H. A pincer auxiliary to force difficult lactamisations. Org. Biomol. Chem. 1, 1830–1832 (2003).

    PubMed  Google Scholar 

  80. Springer, J., Jansen, T. P., Ingemann, S., Hiemstra, H. & van Maarseveen, J. H. Improved auxiliary for the synthesis of medium-sized bis(lactams). Eur. J. Org. Chem. 361–367 (2008).

  81. Abbenante, G. et al. Conformational control by thiazole and oxazoline rings in cyclic octapeptides of marine origin. Novel macrocyclic chair and boat conformation. J. Am. Chem. Soc. 118, 10384–10388 (1996).

    CAS  Google Scholar 

  82. Huisgen, R. Centenary lecture: 1,3-Dipolar cycloadditions. Proc. Chem. Soc. Lond. 357–369 (1961).

  83. Tornøe, C. W., Christensen, C. & Meldal M. J. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    PubMed  Google Scholar 

  84. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    CAS  Google Scholar 

  85. Bock, V. D., Perciaccante, R., Jansen, T. P., Hiemstra, H. & van Maarseveen, J. H. Click chemistry as a route to cyclic tetrapeptide analogues: Synthesis of cyclo-[Pro-Val-ψ(triazole)-Pro-Tyr]. Org. Lett. 8, 919–922 (2006).

    CAS  PubMed  Google Scholar 

  86. Bock, V. D., Speijer, D., Hiemstra, H. & van Maarseveen, J. H. 1,2,3-triazoles as peptide bond isosteres: synthesis and biological evaluation of cyclotetrapeptide mimics. Org. Biomol. Chem. 5, 971–975 (2007).

    CAS  PubMed  Google Scholar 

  87. Turner, R. A., Oliver, A. G. & Lokey, R. S. Click chemistry as a macrocyclization tool in the solid-phase synthesis of small cyclic peptides. Org. Lett. 9, 5011–5014 (2007).

    CAS  PubMed  Google Scholar 

  88. van Maarseveen, J. H., Horne, W. S. & Ghadiri, M. R. Efficient route to C2-symmetric heterocyclic backbone modified cyclic peptides. Org. Lett. 7, 4503–4506 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Horne, S. W., Stout, C. D. & Ghadiri, M. R. A heterocyclic peptide nanotube. J. Am. Chem. Soc. 125, 9372–9376 (2003).

    CAS  PubMed  Google Scholar 

  90. Beierle, J. M. et al. Conformationally homogeneous heterocyclic pseudotetrapeptides as three-dimensional scaffolds for rational drug design: receptor-selective somatostatin analogues. Angew. Chem. Int. Ed. 48, 4725–4729 (2009).

    CAS  Google Scholar 

  91. Tam, A., Arnold, U., Soellner, M. B. & Raines, R. T. Protein prosthesis: 1,5-disubstituted[1,2,3]triazoles as cis-peptide bond surrogates. J. Am. Chem. Soc. 129, 12670–12671 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, L. et al. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc. 127, 15998–15999 (2005).

    CAS  PubMed  Google Scholar 

  93. Horne, W. S., Olsen, C. A., Meierle, J. M., Montero, A. & Ghadiri, M. R. Probing the bioactive conformation of an archetypal natural product HDAC inhibitor with conformationally homogeneous trizaole-modified cyclic tetrapeptide. Angew. Chem. Int. Ed. 48, 4718–4724 (2009).

    CAS  Google Scholar 

  94. Ahsanullah & Rademann, J. Cyclative cleavage through dipolar cycloaddition: polymer-bound azidopeptidylphosphoranes deliver locked cis-triazolylcyclopeptides as privileged protein binders. Angew. Chem. Int. Ed. 49, 5378–5382 (2010).

    CAS  Google Scholar 

  95. Miller, S. J., Blackwell, H. E. & Grubbs, R. H. Application of ring-closing metathesis to the synthesis of rigidified amino acids and peptides. J. Am. Chem. Soc. 118, 9606–9614 (1996).

    CAS  Google Scholar 

  96. Blackwell, H. E. & Grubbs, R. H. Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew. Chem. Int. Ed. 37, 3281–3284 (1998).

    CAS  Google Scholar 

  97. Schafmeister, C. E., Po, J. & Verdine, G. L. An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J. Am. Chem. Soc. 122, 5891–5892 (2000).

    CAS  Google Scholar 

  98. Chapman, R. N., Dimartino, G. & Arora, P. S. A highly stable short α-helix constrained by a main-chain hydrogen-bond surrogate. J. Am. Chem. Soc. 126, 12252–12253 (2004).

    CAS  PubMed  Google Scholar 

  99. Wang, D., Chen, K., Kulp, J. L. III & Arora, P. S. Evaluation of biologically relevant short α-helices stabilized by a main-chain hydrogen-bond surrogate. J. Am. Chem. Soc. 128, 9248–9256 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Illesinghe, J. et al. Metathesis assisted synthesis of cyclic peptides. Chem. Commun. 295–297 (2009).

  101. Vercillo, O. E., Andrade, C. K. Z. & Wessjohann, L. A. Design and synthesis of cyclic RGD pentapeptoids by consecutive Ugi reactions. Org. Lett. 10, 205–208 (2008).

    CAS  PubMed  Google Scholar 

  102. Hebach, C. & Kazmaier, U. Via Ugi reactions to conformationally fixed cyclic peptides. Chem. Commun. 596–597 (2003).

  103. Wu, X., Stockdill, J. L., Wang, P. & Danishefsky, S. J. Total synthesis of cyclosporine: Access to N-methylated peptides via lsonitrile coupling reactions. J. Am. Chem. Soc. 132, 4098–4100 (2008).

    Google Scholar 

  104. Hatakeyama, Y., Sawada, T., Kawano, M. & Fujita, M. Conformational preferences of short peptide sequences. Angew. Chem. Int. Ed. 48, 8695–8698 (2009).

    CAS  Google Scholar 

  105. Schmuck, C. & Wienand, W. Highly stable self-assembly in water: ion pair driven dimerization of a guanidiniocarbonyl pyrrole carboxylate zwitterion. J. Am. Chem. Soc. 125, 452–459 (2003).

    CAS  PubMed  Google Scholar 

  106. Hili, R., Rai, V. & Yudin, A. K. Macrocyclization of linear peptides enabled by amphoteric molecules. J. Am. Chem. Soc. 132, 2889–2891 (2010).

    CAS  PubMed  Google Scholar 

  107. Tse, B. N., Snyder, T. M., Shen, Y. & Liu, D. R. Translation of DNA into a library of 13000 synthetic small-molecule macrocycles suitable for in vitro selection. J. Am. Chem. Soc. 130, 15611–15626 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Marsault, E. et al. Efficient parallel synthesis of macrocyclic peptidomimetics. Bioorg. Med. Chem. Lett. 18, 4731–4735 (2008).

    CAS  PubMed  Google Scholar 

  109. Joo, S. H., Xiao, Q., Ling, Y., Gopishetty, B. & Pei, D. High-throughput sequence determination of cyclic peptide library members by partial Edman degradation/mass spectrometry. J. Am. Chem. Soc. 128, 13000–13009 (2006).

    CAS  PubMed  Google Scholar 

  110. Li, S., Marthandan, N., Bowerman, D., Garner, H. R. & Kodadek, T. Photolithographic synthesis of cyclic peptide arrays using a differential deprotection strategy. Chem. Commun. 581–583 (2005).

  111. Jebrail, M. et al. Synchronized synthesis of peptide-based macrocycles by digital microfluidics. Angew. Chem. Int. Ed. 49, 8625–8629 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Science and Engineering Research Council of Canada for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei K. Yudin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, C., Yudin, A. Contemporary strategies for peptide macrocyclization. Nature Chem 3, 509–524 (2011). https://doi.org/10.1038/nchem.1062

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing