Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Blueprinting macromolecular electronics

Abstract

Recently, by mastering either top-down or bottom-up approaches, tailor-made macromolecular nano-objects with semiconducting properties have been fabricated. These engineered nanostructures for organic electronics are based on conjugated systems predominantly made up of sp2-hybridized carbon, such as graphene nanoribbons. Here, we describe developments in a selection of these nanofabrication techniques, which include graphene carving, stimulus-induced synthesis of conjugated polymers and surface-assisted synthesis. We also assess their potential to reproduce chemically and spatially precise molecular arrangements, that is, molecular blueprints. In a broad context, the engineering of a molecular blueprint represents the fabrication of an integrated all-organic macromolecular electronic circuit. In this Perspective, we suggest chemical routes, as well as convergent on-surface synthesis and microfabrication approaches, for the ultimate goal of bringing the field closer to technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ideal and reality.
Figure 2: Cutting a macromolecule into functional electronic elements.
Figure 3: Stitching molecules together into macromolecular architectures.
Figure 4: Programming surface reactions into extended macromolecular architectures.

Similar content being viewed by others

References

  1. Corey, E. J. Retrosynthetic thinking – essentials and examples. Chem. Soc. Rev. 17, 111–133 (1988).

    CAS  Google Scholar 

  2. Brady, P. A. & Sanders, J. K. M. Selection approaches to catalytic systems. Chem. Soc. Rev. 26, 327–336 (1997).

    CAS  Google Scholar 

  3. Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (Wiley-VCH, 1995).

    Book  Google Scholar 

  4. Moth-Poulsen, K. & Bjornholm, T. Molecular electronics with single molecules in solid-state devices. Nature Nanotech. 4, 551–556 (2009).

    CAS  Google Scholar 

  5. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    CAS  PubMed  Google Scholar 

  6. Metzger, R. M. Unimolecular electronics. J. Mater. Chem. 18, 4364–4396 (2008).

    CAS  Google Scholar 

  7. Joachim, C,. Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    CAS  Google Scholar 

  8. Arias, A. C,. MacKenzie, J. D,. McCulloch, I,. Rivnay, J. & Salleo, A. Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 110, 3–24 (2010).

    CAS  PubMed  Google Scholar 

  9. Baughman, R. H,. Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes - the route toward applications. Science 297, 787–792 (2002).

    CAS  PubMed  Google Scholar 

  10. Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

    CAS  Google Scholar 

  11. Moore, G. E. Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998).

    Google Scholar 

  12. Xia, F,. Perebeinos, V,. Lin, Y.-M,. Wu, Y. & Avouris, P. The origins and limits of metal-graphene junction resistance. Nature Nanotech. 6, 179–184 (2011).

    CAS  Google Scholar 

  13. Novoselov, K. Mind the gap. Nature Mater. 6, 720–721 (2007).

    CAS  Google Scholar 

  14. Nakada, K,. Fujita, M,. Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    CAS  Google Scholar 

  15. Barone, V,. Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).

    CAS  PubMed  Google Scholar 

  16. Yang, L,. Park, C.-H,. Son, Y.-W,. Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).

    PubMed  Google Scholar 

  17. Li, X. L,. Wang, X. R,. Zhang, L,. Lee, S. W. & Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    CAS  PubMed  Google Scholar 

  18. Avouris, P,. Chen, Z. H. & Perebeinos, V. Carbon-based electronics. Nature Nanotech. 2, 605–615 (2007).

    CAS  Google Scholar 

  19. Ponomarenko, L. A. et al. Chaotic dirac billiard in graphene quantum dots. Science 320, 356–358 (2008).

    CAS  Google Scholar 

  20. Murphy, A. R. & Fréchet,, J. M. J. Organic semiconducting oligomers for use in thin film transistors. Chem. Rev. 107, 1066–1096 (2007).

    CAS  PubMed  Google Scholar 

  21. Braga, D. & Horowitz, G. High-performance organic field-effect transistors. Adv. Mater. 21, 1473–1486 (2009).

    CAS  Google Scholar 

  22. Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1317 (2001).

    CAS  PubMed  Google Scholar 

  23. Rycerz, A,. Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).

    CAS  Google Scholar 

  24. Han, M. Y,. Ozyilmaz, B,. Zhang, Y. B. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    PubMed  Google Scholar 

  25. Mativetsky, J. M. et al. Local current mapping and patterning of reduced graphene oxide. J. Am. Chem. Soc. 132, 14130–14136 (2010).

    CAS  PubMed  Google Scholar 

  26. Wei, Z. Q. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1376 (2010).

    CAS  PubMed  Google Scholar 

  27. Tapasztó, L,. Dobrik, G,. Lambin, P. & Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotech. 3, 397–401 (2008).

    Google Scholar 

  28. Wang, X. R. & Dai, H. J. Etching and narrowing of graphene from the edges. Nature Chem. 2, 661–665 (2010).

    CAS  Google Scholar 

  29. Yang, R. et al. An Anisotropic etching effect in the graphene basal plane. Adv. Mater. 22, 4014–4019 (2010).

    CAS  PubMed  Google Scholar 

  30. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    CAS  PubMed  Google Scholar 

  31. Jiao, L,. Zhang, L,. Wang, X. R,. Diankov, G. & Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    CAS  PubMed  Google Scholar 

  32. Xie, L,. Jiao, L. & Dai, H. J. Selective etching of graphene edges by hydrogen plasma. J. Am. Chem. Soc. 132, 14751–14753 (2010).

    CAS  PubMed  Google Scholar 

  33. Okawa, Y. & Aono, M. Nanoscale control of chain polymerization. Nature 409, 683–684 (2001).

    CAS  PubMed  Google Scholar 

  34. Akai-Kasaya, M. et al. Electronic structure of a polydiacetylene nanowire fabricated on highly ordered pyrolytic graphite. Phys. Rev. Lett. 91, 255501 (2003).

    CAS  PubMed  Google Scholar 

  35. Hla, S.-W,. Bartels, L,. Meyer, G. & Rieder, K.-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777 (2000).

    CAS  PubMed  Google Scholar 

  36. Fenwick, O. et al. Thermochemical nanopatterning of organic semiconductors. Nature Nanotech. 4, 664–668 (2009).

    CAS  Google Scholar 

  37. Campos, L. C,. Manfrinato, V. R,. Sanchez-Yamagishi, J. D,. Kong, J. & Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 9, 2600–2604 (2009).

    CAS  PubMed  Google Scholar 

  38. Ciesielski, A,. Palma, C. A,. Bonini, M. & Samorì, P. Towards supramolecular engineering of functional nanomaterials: pre-programming multi-component 2D self-assembly at solid-liquid interfaces. Adv. Mater. 22, 3506–3520 (2010).

    CAS  PubMed  Google Scholar 

  39. Bent, B. E. Mimicking aspects of heterogeneous catalysis: generating, isolating, and reacting proposed surface intermediates on single crystals in vacuum. Chem. Rev. 96, 1361–1390 (1996).

    CAS  PubMed  Google Scholar 

  40. Ma, Z. & Zaera, F. Organic chemistry on solid surfaces. Surf. Sci. Rep. 61, 229–281 (2006).

    CAS  Google Scholar 

  41. Masel, R. L. Principles of Adsorption and Reaction on Solid Surfaces (Wiley, 1996).

    Google Scholar 

  42. Cai, J. M. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    CAS  PubMed  Google Scholar 

  43. Lipton-Duffin, J. A. et al. Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction. Proc. Natl. Acad. Sci. USA 107, 11200–11204 (2010).

    CAS  PubMed  Google Scholar 

  44. Szulczewski, G. J. & White, J. M. Thermal and photon-stimulated reactions of iodobenzene on Ag(111). Surf. Sci. 399, 305–315 (1998).

    CAS  Google Scholar 

  45. Bieri, M. et al. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 6919–6921 (2009).

  46. Lipton-Duffin, J. A,. Ivasenko, O,. Perepichka, D. F. & Rosei, F. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5, 592–597 (2009).

    CAS  PubMed  Google Scholar 

  47. Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    CAS  PubMed  Google Scholar 

  48. Ertl, G. Reactions at Solid Surfaces (Wiley, 2009).

    Google Scholar 

  49. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    CAS  Google Scholar 

  50. Lu, J,. Yeo, P. S. E,. Gan, C. K,. Wu, P. & Loh, K. P. Transforming C60 molecules into graphene quantum dots. Nature Nanotech. 6, 247–252 (2011).

    CAS  Google Scholar 

  51. Bieri, M. et al. Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010).

    CAS  PubMed  Google Scholar 

  52. Shchukin, V. A,. Ledentsov, N. N. & Bimberg, D. Epitaxy of Nanostructures (Springer, 2004).

    Google Scholar 

  53. Gutzler, R. et al. Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). Chem. Commun. 4456–4456 (2009).

  54. Blunt, M. O,. Russell, J. C,. Champness, N. R. & Beton, P. H. Templating molecular adsorption using a covalent organic framework. Chem. Commun. 46, 7157–7159 (2010).

    CAS  Google Scholar 

  55. Treier, M. et al. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nature Chem. 3, 61–67 (2010).

    Google Scholar 

  56. Ullmann, F. & Bielecki, J. Ueber Synthesen in der Biphenylreihe. Ber. Dtsch. Chem. Ges. 34, 2174–2185 (1901).

    CAS  Google Scholar 

  57. Xi, M. & Bent, B. E. Mechanisms of the Ullmann coupling reaction in adsorbed monolayers. J. Am. Chem. Soc. 115, 7426–7433 (1993).

    CAS  Google Scholar 

  58. Sakamoto, J,. van Heijst, J,. Lukin, O. & Schlüter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–1069 (2009).

    CAS  Google Scholar 

  59. Bombis, C. et al. Single molecular wires connecting metallic and insulating surface areas. Angew. Chem. Int. Ed. 48, 9966–9970 (2009).

    CAS  Google Scholar 

  60. Grzybowski, B. A,. Bishop, K. J. M,. Kowalczyk, B. & Wilmer, C. E. The 'wired' universe of organic chemistry. Nature Chem. 1, 31–36 (2009).

    CAS  Google Scholar 

  61. Hod, O,. Barone, V,. Peralta, J. E. & Scuseria, G. E. Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 7, 2295–2299 (2007).

    CAS  PubMed  Google Scholar 

  62. Perepichka, D. F. & Rosei, F. Extending polymer conjugation into the second dimension. Science 323, 216–217 (2009).

    CAS  PubMed  Google Scholar 

  63. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Matthias Treier and Veronica Barone for sharing helpful data and for useful discussions. This work was financially supported by the EC Marie-Curie RTNs PRAIRIES (MRTN-CT-2006-035810) and THREADMILL (MRTN-CT-2006-036040) as well as the ITNs SUPERIOR (PITN-GA-2009-238177) and GENIUS (PITN-GA-2010-264694), the EC FP7 ONE-P large-scale project no. 212311, the NanoSci-E+ project SENSORS and the International Center for Frontier Research in Chemistry (FRC, Strasbourg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Samorì.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palma, CA., Samorì, P. Blueprinting macromolecular electronics. Nature Chem 3, 431–436 (2011). https://doi.org/10.1038/nchem.1043

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1043

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing