Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Construction of bispirooxindoles containing three quaternary stereocentres in a cascade using a single multifunctional organocatalyst

Abstract

Single-step constructions of molecules with multiple quaternary carbon stereocentres are rare. The spirooxindole structural motif is common to a range of bioactive compounds; however, asymmetric synthesis of this motif is complicated due to the presence of multiple chiral centres. The development of organocatalytic cascade reactions has proven to be valuable for the construction of several chiral centres in one step. Here, we describe a newly designed organocatalytic asymmetric domino Michael–aldol reaction between 3-substituted oxindoles and methyleneindolinones that affords complex bispirooxindoles. This reaction was catalysed by a novel multifunctional organocatalyst that contains tertiary and primary amines and thiourea moieties to activate substrates simultaneously, providing extraordinary levels of stereocontrol over four stereocentres, three of which are quaternary carbon stereocentres. This new methodology provides facile access to a range of multisubstituted bispirocyclooxindole derivatives, and should be useful in medicinal chemistry and diversity-oriented syntheses of this intriguing class of compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of spirooxindoles and a strategy for their preparation.
Figure 2: Further exploration of substrates involving methyleneindolinone esters.
Figure 3: Preparation of enantiomer (1R,2R,3S,4R)-3b.
Figure 4: Investigation of a different protecting group and deprotection of bispirooxindole.

Similar content being viewed by others

References

  1. Nicolaou, K. C., Vourloumis, D., Winssinger, N. & Baran, P. S. The art and science of total synthesis at the dawn of the twenty-first century. Angew. Chem. Int. Ed. 39, 44–122 (2000).

    CAS  Google Scholar 

  2. Nicolaou, K. C. & Snyder, S. A. The essence of total synthesis. Proc. Natl Acad. Sci. USA 101, 11929–11936 (2004).

    CAS  PubMed  Google Scholar 

  3. Nicolaou, K. C., Edmonds, D. J. & Bulger, P. G. Cascade reactions in total synthesis. Angew. Chem. Int. Ed. 45, 7134–7186 (2006).

    CAS  Google Scholar 

  4. Li, J. W. H. & Vederas, J. C. Drug discovery and natural products: end of an era or an endless frontier? Science 325, 161–165 (2009).

    PubMed  Google Scholar 

  5. Gaich, T. & Baran, P. S. Aiming for the ideal synthesis, J. Org. Chem. 75, 4657–4673 (2010).

    CAS  PubMed  Google Scholar 

  6. Mugishima, T. et al. Absolute stereochemistry of citrinadins A and B from marine-derived fungus. J. Org. Chem. 70, 9430–9435 (2005).

    CAS  PubMed  Google Scholar 

  7. Bond, R. F., Boeyens, J. C. A., Holzapfel, C. W. & Steyn, P. S. Cyclopiamines A and B, novel oxindole metabolites of penicillium cyclopium westling. J. Chem. Soc. Perkin Trans. 1 1751–1761 (1979).

  8. Galliford, C. V. & Scheidt, K. A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed. 46, 8748–8758 (2007).

    CAS  Google Scholar 

  9. Rottmann, M. et al. Spiroindolones, a potent compound class for the treatment of malaria. Science 329, 1175–1180 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lo, M. M. C., Neumann, C. S., Nagayama, S., Perlstein, E. O. & Schreiber, S. L. A library of spirooxindoles based on a stereoselective three-component coupling reaction. J. Am. Chem. Soc. 126, 16077–16086 (2004).

    CAS  PubMed  Google Scholar 

  11. Ding, K., et al. Structure-based design of potent non-peptide MDM2 inhibitors. J. Am. Chem. Soc. 127, 10130–10131 (2005).

    CAS  PubMed  Google Scholar 

  12. Fuji, K. Asymmetric creation of quaternary carbon centers. Chem. Rev. 93, 2037–2066 (1993).

    CAS  Google Scholar 

  13. Corey, E. J. & Guzman-Perez, A. The catalytic enantioselective construction of molecules with quaternary carbon stereocenters. Angew. Chem. Int. Ed. 37, 388–401 (1998).

    Google Scholar 

  14. Corey, E. J. Catalytic enantioselective Diels–Alder reactions: methods, mechanistic fundamentals, pathways, and applications. Angew. Chem. Int. Ed. 41, 1650–1667 (2002).

    CAS  Google Scholar 

  15. Chen, X., Wei, Q., Luo, S., Xiao, H. & Gong, L. Organocatalytic synthesis of spiro [pyrrolidin-3,3′-oxindoles] with high enantiopurity and structural diversity. J. Am. Chem. Soc. 131, 13819–13825 (2009).

    CAS  Google Scholar 

  16. Bencivenni, G. et al. Targeting structural and stereochemical complexity by organocascade catalysis: construction of spirocyclic oxindoles having multiple stereocenters Angew. Chem. Int. Ed. 48, 7200–7203 (2009).

    CAS  Google Scholar 

  17. Trost, B. M., Cramer, N. & Silverman, S. M. Enantioselective construction of spirocyclic oxindolic cyclopentanes by palladium-catalyzed trimethylenemethane-[3+2]-cycloaddition. J. Am. Chem. Soc. 129, 12396–12397 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Antonchick, A. P. et al. Highly enantioselective synthesis and cellular evaluation of spirooxindoles inspired by natural products. Nature Chem. 2, 735–740 (2010).

    CAS  Google Scholar 

  19. Dounay, A. B. & Overman, L. E. The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem. Rev. 103, 2945–2963 (2003).

    CAS  PubMed  Google Scholar 

  20. Doyle, A. G. & Jacobsen, E. N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    CAS  PubMed  Google Scholar 

  21. Barbas, C. F. III . Organocatalysis lost: modern chemistry, ancient chemistry, and an unseen biosynthetic apparatus. Angew. Chem. Int. Ed. 47, 42–47 (2008).

    CAS  Google Scholar 

  22. MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    CAS  PubMed  Google Scholar 

  23. Melchiorre, P., Marigo, M., Carlone, A. & Bartoli, G. Asymmetric aminocatalysis—gold rush in organic chemistry. Angew. Chem. Int. Ed. 47, 6138–6171 (2008).

    CAS  Google Scholar 

  24. Ramachary, D. B., Chowdari, N. S. & Barbas, C. F. III . Organocatalytic asymmetric domino Knoevenagel/Diels–Alder reactions: a bioorganic approach to the diastereospecific and enantioselective construction of highly substituted spiro[5,5]undecane-1,5,9-triones. Angew. Chem. Int. Ed. 42, 4233–4237 (2003).

    CAS  Google Scholar 

  25. Enders, D., Huttl, M. R. M., Grondal, C. & Raabe, G. Control of four stereocentres in a triple cascade organocatalytic reaction. Nature 441, 861–863 (2006).

    CAS  PubMed  Google Scholar 

  26. Enders, D., Grondal, C. & Huttl, M. R. M. Asymmetric organocatalytic domino reactions. Angew. Chem. Int. Ed. 46, 1570–1581 (2007).

    CAS  Google Scholar 

  27. Ramachary, D. B., Shiva Prasad, M. & Madhavachary, R. A general approach to high-yielding asymmetric synthesis of chiral 3-alkyl-4-nitromethylchromans via cascade Barbas–Michael and acetalization reactions. Org. Biomol. Chem. 9, 2715–2721 (2011).

    CAS  PubMed  Google Scholar 

  28. Grondal, C., Jeanty, M. & Enders, D. Organocatalytic cascade reactions as a new tool in total synthesis. Nature Chem. 2, 167–178 (2010).

    CAS  Google Scholar 

  29. Tian, S. et al. Asymmetric organic catalysis with modified cinchona alkaloids. Acc. Chem. Res. 37, 621–631 (2004).

    CAS  PubMed  Google Scholar 

  30. Li, H., Wang, Y., Tang, L. & Deng, L. Highly enantioselective conjugate addition of malonate and β-ketoester to nitroalkenes: asymmetric C–C bond formation with new bifunctional organic catalysts based on cinchona alkaloids. J. Am. Chem. Soc. 126, 9906–9907 (2004).

    CAS  PubMed  Google Scholar 

  31. Ye, J., Dixon, D. J. & Hynes, P. S. Enantioselective organocatalytic Michael addition of malonate esters to nitro olefins using bifunctional cinchonine derivatives. Chem. Commun. 4481–4483 (2005).

  32. Vakulya, B., Varga, S., Csampai, A. & Soos, T. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts. Org. Lett. 7, 1967–1970 (2005).

    CAS  PubMed  Google Scholar 

  33. McCooey, S. H. & Connon, S. J. Urea- and thiourea-substituted cinchona alkaloid derivatives as highly efficient bifunctional organocatalysts for the asymmetric addition of malonate to nitroalkenes: inversion of configuration at C9 dramatically improves catalyst performance. Angew. Chem. Int. Ed. 44, 6367–6370 (2005).

    CAS  Google Scholar 

  34. Singh, R. P. et al. Enantioselective Diels–Alder reaction of simple α,β-unsaturated ketones with a cinchona alkaloid catalyst. J. Am. Chem. Soc. 130, 2422–2423 (2008).

    CAS  PubMed  Google Scholar 

  35. Tan, B., Chua, P. J., Li, Y. & Zhong, G. Organocatalytic asymmetric tandem Michael–Henry reactions: a highly stereoselective synthesis of multifunctionalized cyclohexanes with two quaternary stereocenters. Org. Lett. 10, 2437–2440 (2008).

    CAS  PubMed  Google Scholar 

  36. Tan, B., Lu, Y., Zeng, X., Chua, P. J. & Zhong, G. Facile domino access to chiral bicyclo[3.2.1]octanes and discovery of a new catalytic activation mode. Org. Lett. 12, 2682–2685 (2010).

    CAS  PubMed  Google Scholar 

  37. Singh, R. P., Foxman, B. M. & Deng, L. Asymmetric vinylogous aldol reaction of silyloxy furans with a chiral organic salt. J. Am. Chem. Soc. 132, 9558–9560 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Peschiulli, A., Procuranti, B., O'Connor, C. J. & Connon, S. J. Synergistic organocatalysis in the kinetic resolution of secondary thiols with concomitant desymmetrization of an anhydride. Nature Chem. 2, 380–384 (2010).

    CAS  Google Scholar 

  39. He, R. Ding, C. & Maruoka, K. Phosphonium salts as chiral phase-transfer catalysts: asymmetric Michael and Mannich reactions of 3-aryloxindoles. Angew. Chem. Int. Ed. 47, 4559–4561 (2009).

    Google Scholar 

  40. Bui, T., Syed, S. & Barbas, C. F. III . Thiourea-catalyzed highly enantio- and diastereoselective additions of oxindoles to nitroolefins: application to the formal synthesis of (+)-physostigmine. J. Am. Chem. Soc. 131, 8758–8759 (2009).

    CAS  PubMed  Google Scholar 

  41. He, R., Shirakawa, S. & Maruoka, K. Enantioselective base-free phase-transfer reaction in water-rich solvent. J. Am. Chem. Soc. 131, 16620–16621(2009).

    CAS  PubMed  Google Scholar 

  42. Bui, T., Candeias, N. R. & Barbas, C. F. III . Dimeric quinidine-catalyzed enantioselective aminooxygenation of oxindoles: an organocatalytic approach to 3-hydroxyoxindole derivatives. J. Am. Chem. Soc. 132, 5574–5575 (2010).

    CAS  PubMed  Google Scholar 

  43. Jiang, K., Jia, Z., Yin, X., Wu, L. & Chen. Y. Asymmetric quadruple aminocatalytic domino reactions to fused carbocycles incorporating a spirooxindole motif. Org. Lett. 12, 2766–2769 (2010).

    CAS  PubMed  Google Scholar 

  44. Zhu, Q. & Lu, Y. Stereocontrolled creation of all-carbon quaternary stereocenters by organocatalytic conjugate addition of oxindoles to vinyl sulfone. Angew. Chem. Int. Ed. 49, 7753–7756 (2010).

    CAS  Google Scholar 

  45. Wang, L. et al. Highly organocatalytic asymmetric Michael–ketonealdol–dehydration domino reaction: straightforward approach to construct six-membered spirocyclicoxindoles. Chem. Commun. 46, 8064–8066 (2010).

    CAS  Google Scholar 

  46. Zhou, F., Liu, Y. & Zhou, J. Catalytic asymmetric synthesis of oxindoles bearing a tetrasubstituted stereocenter at the C-3 position. Adv. Synth. Catal. 352, 1381–1407 (2010).

    CAS  Google Scholar 

  47. Galzerano, P. et al. Asymmetric iminium ion catalysis with a novel bifunctional primary amine thiourea: controlling adjacent quaternary and tertiary stereocenters. Chem. Eur. J. 15, 7846–7849 (2009).

    CAS  PubMed  Google Scholar 

  48. Okino, T., Hoashi, Y., Furukawa, T., Xu, X. & Takemoto, Y. Enantio- and diastereoselective Michael reaction of 1,3-dicarbonyl compounds to nitroolefins catalyzed by a bifunctional thiourea. J. Am. Chem. Soc. 127, 119–125 (2005).

    CAS  PubMed  Google Scholar 

  49. Li, H. et al. Stereocontrolled creation of adjacent quaternary and tertiary stereocenters by a catalytic conjugate addition. Angew. Chem. Int. Ed. 44, 105–108 (2005).

    CAS  Google Scholar 

  50. Hamza, A., Schubert, G., Soos, T. & Papai, I. Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: competing routes to C–C bond formation. J. Am. Chem. Soc. 128, 13151–13160 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Skaggs Institute for Chemical Biology for funding. N.R.C. thanks Fundação para a Ciência e Tecnologia (SFRH/BPD/46589/2008) for financial support. The authors also thank A.L. Rheingold for X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

B.T. and N.C. designed and carried out the chemical experiments. C.B. designed the experiments and supervised the project. All authors discussed the results, contributed to writing the manuscript, and commented on the manuscript.

Corresponding author

Correspondence to Carlos F. Barbas III.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8082 kb)

Supplementary information

Crystallographic data for compound 3e (CIF 22 kb)

Supplementary information

Crystallographic data for compound 3p (CIF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, B., Candeias, N. & Barbas, C. Construction of bispirooxindoles containing three quaternary stereocentres in a cascade using a single multifunctional organocatalyst. Nature Chem 3, 473–477 (2011). https://doi.org/10.1038/nchem.1039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing