Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures

Abstract

Catalysis plays a critical role in chemical conversion, energy production and pollution mitigation. High activation barriers associated with rate-limiting elementary steps require most commercial heterogeneous catalytic reactions to be run at relatively high temperatures, which compromises energy efficiency and the long-term stability of the catalyst. Here we show that plasmonic nanostructures of silver can concurrently use low-intensity visible light (on the order of solar intensity) and thermal energy to drive catalytic oxidation reactions—such as ethylene epoxidation, CO oxidation, and NH3 oxidation—at lower temperatures than their conventional counterparts that use only thermal stimulus. Based on kinetic isotope experiments and density functional calculations, we postulate that excited plasmons on the silver surface act to populate O2 antibonding orbitals and so form a transient negative-ion state, which thereby facilitates the rate-limiting O2-dissociation reaction. The results could assist the design of catalytic processes that are more energy efficient and robust than current processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasmon-enhanced oxidation reactions.
Figure 2: Optical properties of silver nanocubes.
Figure 3: Wavelength- and intensity-dependent photoactivity.
Figure 4: Molecular mechanisms for electron-assisted O2 dissociation.

Similar content being viewed by others

References

  1. Hammer, B. & Nørskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    Article  CAS  Google Scholar 

  2. Wittstock, A., Zielasek, V., Biener, J., Friend, C. M. & Baumer, M. Nanoporous gold catalysts for selective gas-phase oxidative methanol at low temperature. Science 327, 319–322 (2010).

    Article  CAS  Google Scholar 

  3. Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814 (2002).

    Article  CAS  Google Scholar 

  4. Lei, Y. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328, 224–228 (2010).

    Article  CAS  Google Scholar 

  5. Lu, J. et al. In-situ UV-vis studies of the effect of particle size on the epoxidation of ethylene and propylene on supported silver catalysts with molecular oxygen. J. Catal. 232, 85–95 (2005).

    Article  CAS  Google Scholar 

  6. Tian, N., Zhou, Z., Sun, S., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    Article  CAS  Google Scholar 

  7. Chen, M., Kumar, D., Yi, C. W. & Goodman, D. W. The promotional effect of gold in catalysis by palladium–gold. Science 310, 291–293 (2005).

    Article  CAS  Google Scholar 

  8. Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

    Article  CAS  Google Scholar 

  9. Sabatier, P. Hydrogenations et deshydrogenations per catalyse. Ber. Deut. Chem. Ges. 44, 1984–2001 (1911).

    Article  CAS  Google Scholar 

  10. Link, S. & El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999).

    Article  CAS  Google Scholar 

  11. Christopher, P., Ingram, D. B. & Linic, S. Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons. J. Phys. Chem. C 114, 9173–9177 (2010).

    Article  CAS  Google Scholar 

  12. Jin R. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).

    Article  CAS  Google Scholar 

  13. Jin R. et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003).

    Article  CAS  Google Scholar 

  14. Adleman, J. R., Boyd, D. A., Goodwin, D. G. & Psaltis, D. Heterogeneous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009).

    Article  CAS  Google Scholar 

  15. Mori, K., Kawashima, M., Che, M. & Yamashita, H. Enhancement of the photoinduced oxidation activity of a ruthenium(II) complex anchored on silica-coated silver nanoparticles by localized surface plasmon resonance. Angew. Chem. Int. Ed. 49, 8598–8601.

  16. Awazu, H. et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676–1680 (2008).

    Article  CAS  Google Scholar 

  17. Dai, H.-L. & Ho, W. Laser Spectroscopy and Photochemistry on Metal Surfaces (World Scientific, 1995).

  18. Buntin, S. A., Richter, L. J., Cavanagh, R. R. & King, D. S. Optically driven surface reactions: evidence for the role of hot electrons. Phys. Rev. Lett. 61, 1321–1324 (1988).

    Article  CAS  Google Scholar 

  19. Prybyla, J. A., Heinz, T. F., Misewich, J. A., Loy, M. M. T. & Glownia, J. H. Desorption induced by femtosecond laser pulses. Phys. Rev. Lett. 64, 1537–1540 (1990).

    Article  CAS  Google Scholar 

  20. Gadzuk, J. W. Resonance-assisted hot electron femtochemistry at surfaces. Phys. Rev. Lett. 76, 4234–4237 (1996).

    Article  CAS  Google Scholar 

  21. Her, T.-H., Finlay, R. J., Wu, C. & Mazur, E. Surface femtochemistry of CO/O2/Pt(111): the importance of nonthermalized substrate electrons. J. Chem. Phys. 108, 8595–8598 (1998).

    Article  CAS  Google Scholar 

  22. Mulugeta, D., Kim, K. H., Watanabe, K., Menzel, D. & Freund, H.-J. Size effects in thermal and photochemistry of (NO)2 on Ag nanoparticles. Phys Rev. Lett. 101, 146103 (2008)

    Article  Google Scholar 

  23. Hatch, S. R., Zhu, X.-Y., White, J. M. & Campion, A. Photoinduced pathways to dissociation and desorption of dioxygen on Ag(110) and Pt(111). J. Phys. Chem. 95, 1759–1768 (1991).

    Article  CAS  Google Scholar 

  24. So, S. K., Franchy, R. & Ho, W. Photodesorption of NO from Ag(111) and Cu(111). J. Chem. Phys. 95, 1385–1399 (1991).

    Article  CAS  Google Scholar 

  25. Mieher, W. D. & Ho, W. Bimolecular surface photochemistry: mechanisms of CO oxidation on Pt(111) at 85 K. J. Chem. Phys. 99, 9279–9295 (1993).

    Article  CAS  Google Scholar 

  26. Qu, Z., Cheng, M., Huang, W. & Bao, X. Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts. J. Catal. 229, 446–458 (2005).

    Article  CAS  Google Scholar 

  27. Gang, L., Anderson, B. G., van Grondelle, J. & van Santen, R. A. Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts. Appl. Catal. B 40, 101–110 (2003).

    Article  CAS  Google Scholar 

  28. Christopher, P. & Linic, S. Shape- and size-specific chemistry of Ag nanostructures in catalytic ethylene epoxidation. ChemCatChem 2, 78–83 (2010).

    Article  CAS  Google Scholar 

  29. Christopher, P. & Linic, S. Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts. J. Am. Chem. Soc. 130, 11264–11265 (2008).

    Article  CAS  Google Scholar 

  30. Park, D. W. & Gau, G. Ethylene epoxidation on a silver catalyst: unsteady and steady state kinetics. J. Catal. 105, 81–94 (1987).

    Article  CAS  Google Scholar 

  31. Gavriilidis, A. & Varma, A. Optimal catalyst activity profiles in pellets: 9. Study of ethylene epoxidation. AIChE J. 38, 291–296 (1992).

    Article  CAS  Google Scholar 

  32. Campbell, C. T. & Paffett, M. T. Model studies of ethylene epoxidation catalyzed by the Ag(110) surface. Surf. Sci. 139, 396–416 (1984).

    Article  CAS  Google Scholar 

  33. Wynblatt, P. & Gjostein, N. Particle growth in model supported metal catalysts – 1. Theory. Acta Metall. 24, 1165–1174 (1976).

    Article  CAS  Google Scholar 

  34. Brus, L. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008).

    Article  CAS  Google Scholar 

  35. Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: optical and photo-thermal properties and some applications in imaging, sensing, biology and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  CAS  Google Scholar 

  36. Prodan, E., Radloff, C., Halas, N. J. & Norlander, P. A hybridization model for the plasmon resonance of complex nanostructures. Science 302, 419–422 (2003).

    Article  CAS  Google Scholar 

  37. Bukhtiyarov, V. I. et al. Atomic oxygen species on silver: photoelectron spectroscopy and x-ray absorption studies. Phys. Rev. B 67, 235422 (2003).

    Article  Google Scholar 

  38. Bukhtiyarov, V. I. et al. Combined in situ XPS and PTRMS study of ethylene epoxidation over silver. J. Catal. 238, 260–269 (2006).

    Article  CAS  Google Scholar 

  39. Watanabe, K., Menzel, D., Nilius, N. & Freund, H. J. Photochemistry on metal nanoparticles. Chem. Rev. 106, 4301–4320 (2006).

    Article  CAS  Google Scholar 

  40. Herrmann, J. M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115–129 (1999).

    Article  CAS  Google Scholar 

  41. Zhang, Z. & Yates, J. T. Direct observation on surface-mediated electron–hole pair recombination in TiO2(110). J. Phys. Chem. C 114, 3098–3101 (2010).

    Article  CAS  Google Scholar 

  42. Stegelmann, C., Schiødt, N. C., Campbell, C. T. & Stolze, P. Microkinetic modeling of ethylene oxidation over silver. J. Catal. 221, 630–649 (2004).

    Article  CAS  Google Scholar 

  43. Linic, S. & Barteau, M. A. Construction of a reaction coordinate and a microkinetic model for ethylene epoxidation on silver from DFT calculations and surface science experiments. J. Catal. 214, 200–212 (2003).

    Article  CAS  Google Scholar 

  44. Bonn, M. et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999).

    Article  CAS  Google Scholar 

  45. Funk, S. et al. Desorption of CO from Ru(001) induced by near-infrared femtosecond laser pulses. J. Chem. Phys. 112, 9888–9897 (2000).

    Article  CAS  Google Scholar 

  46. Denzler, D. N., Frischkorn, C., Hess, C., Wolf, M. & Ertl, G. Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett. 91, 226102 (2003).

    Article  CAS  Google Scholar 

  47. Gavnholt, J., Olsen, T., Engelund, M. & Shiøtz, J. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces. Phys. Rev. B 78, 075441 (2008).

    Article  Google Scholar 

  48. Olsen, T., Gavnholt, J. & Schiøtz, J. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces. Phys. Rev. B 79, 035403 (2009).

    Article  Google Scholar 

  49. Misewich, J. A., Heinz, T. F. & Newns, D. M. Desorption induced by multiple electronic transitions. Phys. Rev. Lett. 68, 3737–3740 (1992).

    Article  CAS  Google Scholar 

  50. Bartels, L. et al. Dynamics of electron-induced manipulation of individual CO molecules on Cu(111). Phys. Rev. Lett. 80, 2004–2007 (1998).

    Article  CAS  Google Scholar 

  51. Beckerle J. D. et al. Ultrafast infrared response of adsorbates on metal surfaces: vibrational lifetime of CO/Pt(111). Phys. Rev. Lett. 64, 2090–2093 (1990).

    Article  CAS  Google Scholar 

  52. Langhammer, C., Yuan, Z., Zoric, I. & Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 6, 833–838 (2006).

    Article  CAS  Google Scholar 

  53. Langhammer, C., Kasemo, B. & Zoric, I. Absorption and scattering of light by Pt, Pd, Ag and Au nanodisks: absolute cross sections and branching ratios. J. Chem. Phys. 126, 194702 (2007).

    Article  Google Scholar 

  54. Im, S. H., Lee, Y. T., Wiley, B. & Xia, Y. Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed. 44, 2154–2157 (2005).

    Article  CAS  Google Scholar 

  55. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the US Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences (FG-02-05ER15686) and the National Science Foundation (CTS-CAREER 0543067, NSF-0966700). S.L. acknowledges the DuPont Young Professor grant and the Camille Dreyfus Teacher-Scholar Award from the Camille & Henry Dreyfus Foundation. We also acknowledge David B. Ingram for stimulating discussions and helpful insights.

Author information

Authors and Affiliations

Authors

Contributions

P.C., H.X. and S.L. devised and developed the project. P.C. carried out experimental work and analysis. H.X. performed the DFT calculations. All the authors wrote the manuscript. S.L. is the PhD adviser of H.X. and P.C.

Corresponding author

Correspondence to Suljo Linic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chem 3, 467–472 (2011). https://doi.org/10.1038/nchem.1032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing