Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability

Abstract

Metal–organic frameworks (MOFs) are a class of crystalline materials that consist of metal ions and organic ligands linked together by coordination bonds. Because of their porosity and the possibility of combining large surface areas with pore characteristics that can be tailored, these solids show great promise for a wide range of applications. Although most applications currently under investigation are based on powdered solids, developing synthetic methods to prepare defect-free MOF layers will also enable applications based on selective permeation. Here, we demonstrate how the intrinsically hybrid nature of MOFs enables the self-completing growth of thin MOF layers. Moreover, these layers can be shaped as hollow capsules that demonstrate selective permeability directly related to the micropore size of the MOF crystallites forming the capsule wall. Such capsules effectively entrap guest species, and, in the future, could be applied in the development of selective microreactors containing molecular catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different concepts in the synthesis of MOF films.
Figure 2: Preparation of hollow MOF capsules.
Figure 3: Scanning electron micrographs of hollow [Cu3(BTC)2] capsules.
Figure 4: Selective permeability of [Cu3(BTC)2] capsules.

Similar content being viewed by others

References

  1. Russell, J. T. et al. Self-assembly and cross-linking of bionanoparticles at liquid–liquid interfaces. Angew. Chem. Int. Ed. 44, 2420–2426 (2005).

    Article  CAS  Google Scholar 

  2. Chai, G. Y. & Krantz, W. B. Formation and characterization of polyamide membranes via interfacial polymerization. J. Membr. Sci. 93, 175–192 (1994).

    Article  CAS  Google Scholar 

  3. Liu, J., Liu, F., Gao, K., Wu, J. S. & Xue, D. F. Recent developments in the chemical synthesis of inorganic porous capsules. J. Mater. Chem. 19, 6073–6084 (2009).

    Article  CAS  Google Scholar 

  4. Crespy, D., Stark, M., Hoffmann-Richter, C., Ziener, U. & Landfester, K. Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets. Macromolecules 40, 3122–3135 (2007).

    Article  CAS  Google Scholar 

  5. Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chem. 2, 944–948 (2010).

    Article  CAS  Google Scholar 

  6. Murray, L. J., Dinca, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).

    Article  CAS  Google Scholar 

  7. Corma, A., Garcia, H. & Xamena, F. X. L. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655 (2010).

    Article  CAS  Google Scholar 

  8. Ma, L. Q., Falkowski, J. M., Abney, C. & Lin, W. B. A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis. Nature Chem. 2, 838–846 (2010).

    Article  CAS  Google Scholar 

  9. Li, J. R., Kuppler, R. J. & Zhou, H. C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  Google Scholar 

  10. Shimomura, S. et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nature Chem. 2, 633–637 (2010).

    Article  CAS  Google Scholar 

  11. Gascon, J. & Kapteijn, F. Metal–organic framework membranes—high potential, bright future? Angew. Chem. Int. Ed. 49, 1530–1532 (2010).

    Article  CAS  Google Scholar 

  12. Hurd, J. A. et al. Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework. Nature Chem. 1, 705–710 (2009).

    Article  CAS  Google Scholar 

  13. Huang, A. S., Bux, H., Steinbach, F. & Caro, J. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angew. Chem. Int. Ed. 49, 4958–4961 (2010).

    Article  CAS  Google Scholar 

  14. Zacher, D., Baunemann, A., Hermes, S. & Fischer, R. A. Deposition of microcrystalline [Cu3(btc)2] and [Zn2(bdc)2(dabco)] at alumina and silica surfaces modified with patterned self assembled organic monolayers: evidence of surface selective and oriented growth. J. Mater. Chem. 17, 2785–2792 (2007).

    Article  CAS  Google Scholar 

  15. Biemmi, E., Scherb, C. & Bein, T. Oriented growth of the metal organic framework Cu3(BTC)2(H2O)3·xH2O tunable with functionalized self-assembled monolayers. J. Am. Chem. Soc. 129, 8054–8055 (2007).

    Article  CAS  Google Scholar 

  16. Shekhah, O. et al. Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy. Nature Mater. 8, 481–484 (2009).

    Article  CAS  Google Scholar 

  17. Gascon, J., Aguado, S. & Kapteijn, F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Micropor. Mesopor. Mater. 113, 132–138 (2008).

    Article  CAS  Google Scholar 

  18. Li, Y. S. et al. Molecular sieve membrane: supported metal–organic framework with high hydrogen selectivity. Angew. Chem. Int. Ed. 49, 548–551 (2010).

    Article  CAS  Google Scholar 

  19. Ranjan, R. & Tsapatsis, M. Microporous metal organic framework membrane on porous support using the seeded growth method. Chem. Mater. 21, 4920–4924 (2009).

    Article  CAS  Google Scholar 

  20. Ameloot, R. et al. Patterned growth of metal–organic framework coatings by electrochemical synthesis. Chem. Mater. 21, 2580–2582 (2009).

    Article  CAS  Google Scholar 

  21. Forster, P. M., Thomas, P. M. & Cheetham, A. K. Biphasic solvothermal synthesis: a new approach for hybrid inorganic–organic materials. Chem. Mater. 14, 17–20 (2002).

    Article  CAS  Google Scholar 

  22. Banerjee, A., Mahata, P. & Natarajan, S. Use of liquid–liquid interface (biphasic) for the preparation of benzenetricarboxylate complexes of cobalt and nickel. Eur. J. Inorg. Chem. 3501–3514 (2008).

  23. Forster, P. M. & Cheetham, A. K. Open-framework nickel succinate, [Ni7(C4H4O4)6(OH)2(H2O)2]·2H2O: a new hybrid material with three-dimensional Ni–O–Ni connectivity. Angew. Chem. Int. Ed. 41, 457–459 (2002).

    Article  CAS  Google Scholar 

  24. Biradha, K. & Fujita, M. Co-ordination polymers containing square grids of dimension 15×15 angstrom. J. Chem. Soc. Dalton Trans. 3805–3810 (2000).

  25. Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n . Science 283, 1148–1150 (1999).

    Article  CAS  Google Scholar 

  26. Umbanhowar, P. B., Prasad, V. & Weitz, D. A. Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16, 347–351 (2000).

    Article  CAS  Google Scholar 

  27. Schlesinger, M., Schulze, S., Hietschold, M. & Mehring, M. Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Micropor. Mesopor. Mater. 132, 121–127 (2010).

    Article  CAS  Google Scholar 

  28. Khan, N. A. & Jhung, S. H. Facile syntheses of metal–organic framework Cu3(BTC)2(H2O)3 under ultrasound. B. Kor. Chem. Soc. 30, 2921–2926 (2009).

    Article  CAS  Google Scholar 

  29. Hartmann, M. et al. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2 . Langmuir 24, 8634–8642 (2008).

    Article  CAS  Google Scholar 

  30. Chowdhury, P., Bikkina, C., Meister, D., Dreisbach, F. & Gumma, S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Micropor. Mesopor. Mater. 117, 406–413 (2009).

    Article  CAS  Google Scholar 

  31. Xiao, B. et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal–organic framework. J. Am. Chem. Soc. 129, 1203–1209 (2007).

    Article  CAS  Google Scholar 

  32. Crank, J. The Mathematics of Diffusion 2nd edn, p. 93 (Oxford Univ. Press, 1975).

    Google Scholar 

  33. Zhang, L. Y., Yao, S. J. & Guan, Y. X. Diffusion characteristics of solutes with low molecular weight in sodium alginate/cellulose sulfate-CaCl2/poly(methylene-co-guanidine) capsules. J. Chem. Eng. Data 48, 864–868 (2003).

    Article  CAS  Google Scholar 

  34. Lide, D. R. (ed.) CRC Handbook of Chemistry and Physics 90th edn, pp. 6–217 (CRC Press/Taylor and Francis, 2009).

    Google Scholar 

  35. Nakasaka, Y., Tago, T., Odate, K. & Masuda, T. Measurement of intracrystalline diffusivity of benzene within MFI-type zeolite from bulk benzene/cyclohexane liquid phase. Micropor. Mesopor. Mater. 112, 162–169 (2008).

    Article  CAS  Google Scholar 

  36. Cui, X. J. et al. Dynamic equilibria in solvent-mediated anion, cation and ligand exchange in transition-metal coordination polymers: solid-state transfer or recrystallisation? Chem. Eur. J. 15, 8861–8873 (2009).

    Article  CAS  Google Scholar 

  37. Mustafa, M. B., Tipton, D. & Russo, P. S. Temperature ramped fluorescence photobleaching recovery for the direct evaluation of thermoreversible gels. Macromolecules 22, 1500–1504 (1989).

    Article  CAS  Google Scholar 

  38. Bux, H. et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 131, 16000–16001 (2009).

    Article  CAS  Google Scholar 

  39. Ren, N. et al. Novel, efficient hollow zeolitically microcapsulized noble metal catalysts. J. Catal. 251, 182–188 (2007).

    Article  CAS  Google Scholar 

  40. Coperet, C. & Basset, J. M. Strategies to immobilize well-defined olefin metathesis catalysts: supported homogeneous catalysis vs. surface organometallic chemistry. Adv. Synth. Catal. 349, 78–92 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Belgian Federal Government for support for IAP project 6/27 Functional Supramolecular Systems, to K.U.Leuven for the Methusalem CASAS grant, to FWO Vlaanderen for project funding G.0453.09. R.A. and M.B.J.R. are grateful for support from FWO Vlaanderen. D. Henot is acknowledged for performing elemental analysis. The authors thank P.A. Jacobs for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

R.A., M.B.J.R. and D.E.D.V. designed the experiments. R.A. and W.V. developed the setup used to prepare MOF capsules and optimized the synthesis conditions. R.A. and F.V. performed the experiments demonstrating selective permeability. All authors contributed in writing the manuscript.

Corresponding author

Correspondence to Dirk E. De Vos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5588 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ameloot, R., Vermoortele, F., Vanhove, W. et al. Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability. Nature Chem 3, 382–387 (2011). https://doi.org/10.1038/nchem.1026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1026

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing