Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A robust molecular platform for non-volatile memory devices with optical and magnetic responses

Abstract

Bistable molecules that behave as switches in solution have long been known. Systems that can be reversibly converted between two stable states that differ in their physical properties are particularly attractive in the development of memory devices when immobilized in substrates. Here, we report a highly robust surface-confined switch based on an electroactive, persistent organic radical immobilized on indium tin oxide substrates that can be electrochemically and reversibly converted to the anion form. This molecular bistable system behaves as an extremely robust redox switch in which an electrical input is transduced into optical as well as magnetic outputs under ambient conditions. The fact that this molecular surface switch, operating at very low voltages, can be patterned and addressed locally, and also has exceptionally high long-term stability and excellent reversibility and reproducibility, makes it a very promising platform for non-volatile memory devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of the electrochemical bistability of a SAM of PTM radical 1.
Figure 2: Synthesis of PTM radical 1.
Figure 3: Electrochemical characteristics of SAMs of 1.
Figure 4: Optical absorption of the two states of the SAM of 1.
Figure 5: Time response of the switch.
Figure 6: Measure of the optical response of the switch.
Figure 7: Measure of the magnetic response of the switch.

Similar content being viewed by others

References

  1. Wöll, C. Interfacial systems chemistry: towards the remote control of surface properties. Angew. Chem. Int. Ed. 48, 8406–8408 (2009).

    Article  Google Scholar 

  2. Heimel, G., Romaner L., Zojer, E. & Brédas, J.-L. The interface energetics of self-assembled monolayers on metals. Acc. Chem. Res. 41, 721–729 (2008).

    Article  CAS  Google Scholar 

  3. Mendes, P. M. Stimuli-responsive surfaces for bio-applications. Chem. Soc. Rev. 37, 2512–2529 (2008).

    Article  CAS  Google Scholar 

  4. Kronemeijer, A. J. et al. Reversible conductance switching in molecular devices. Adv. Mater. 20, 1467–1473 (2008).

    Article  CAS  Google Scholar 

  5. Mativetsky, J. M. et al. Azobenzenes as light-controlled molecular electronic switches in nanoscale metal–molecule–metal junctions. J. Am. Chem. Soc. 130, 9192–9193 (2008).

    Article  CAS  Google Scholar 

  6. Photochromism: Memories and switches. Chem. Rev. 100(special issue), 6–1890 (2000).

  7. Liu, Z., Yasseri, A. A., Lindsey, J. S. & Bocian, D. F. Molecular memories that survive silicon device processing and real-world operation. Science 302, 1543–1545 (2003).

    Article  CAS  Google Scholar 

  8. Katsonis, N. et al. Reversible conductance switching of single diarylethenes on a gold surface. Adv. Mater. 18, 1397–1400 (2006).

    Article  CAS  Google Scholar 

  9. Namiki, K., Sakamoto, A., Murata, M., Kume, S. & Nishihara, H. Reversible photochromism of a ferrocenylazobenzene monolayer controllable by a single green light source. Chem. Commun. 4650–4652 (2007).

  10. Sortino, S., Petralia, S., Conoci, S. & Di Bella S. Monitoring photoswitching of azobenzene-based self-assembled monolayers on ultrathin platinum films by UV/vis spectroscopy in the transmission mode. J. Mater. Chem. 14, 811–813 (2004).

    Article  CAS  Google Scholar 

  11. Areephong, J., Browne, W. R., Katsonis, N. & Feringa, B. L. Photo- and electro-chromism of diarylethene modified ITO electrodes—towards molecular based read–write–erase information storage. Chem. Commun. 3930–3932 (2006).

  12. Lahann, J. et al. A reversibly switching surface. Science 299, 371–374 (2003).

    Article  CAS  Google Scholar 

  13. de Ruiter, G. Gupta, T. & van der Boom, M. E. Selective optical recognition and quantification of parts per million levels of Cr6+ in aqueous and organic media by immobilized polypyridyl complexes on glass. J. Am. Chem. Soc. 130, 2744–2745 (2008).

    Article  CAS  Google Scholar 

  14. Gupta, T. & van der Boom, M. E. Monolayer-based selective optical recognition and quantification of FeCl3 via electron transfer. J. Am. Chem. Soc. 129, 12296–12303 (2007).

    Article  CAS  Google Scholar 

  15. Gupta, T. & van der Boom, M. E. Optical sensing of parts per million levels of water in organic solvents using redox-active osmium chromophore-based monolayers. J. Am. Chem. Soc. 128, 8400–8401 (2006).

    Article  CAS  Google Scholar 

  16. Cook, M. J., Nygard, A.-M., Wang, Z. & Russell, D. A. An evanescent field driven mono-molecular layer photoswitch: coordination and release of metallated macrocycles. Chem. Commun. 1056–1057 (2002).

  17. Sortino, S., Petralia, S., Conoci, S. & Di Bella, S. Novel self-assembled monolayers of dipolar ruthenium(III/II) pentaammine(4,4′-bipyridinium) complexes on ultrathin platinum films as redox molecular switches. J. Am. Chem. Soc. 125, 1122–1123 (2003).

    Article  CAS  Google Scholar 

  18. Sortino, S. et al. Electrochemical switching of chromogenic monolayers self-assembled on transparent platinum electrodes. Adv. Mater 17, 1390–1393 (2005).

    Article  CAS  Google Scholar 

  19. Shukla, A. D., Das, A. & van der Boom, M. E. Electrochemical addressing of the optical properties of a monolayer on a transparent conducting substrate. Angew. Chem. Int. Ed. 44, 3237–3240 (2005).

    Article  CAS  Google Scholar 

  20. Gupta, T. et al. Covalent assembled osmium-chromophore-based monolayers: chemically induced modulation of optical properties in the visible region. Chem. Mater. 18, 1379–1382 (2006).

    Article  CAS  Google Scholar 

  21. Gupta, T. & van der Boom, M. E. Chemical communication between metal-complex-based monolayers. Angew. Chem. Int. Ed. 47, 2260–2262 (2008).

    Article  CAS  Google Scholar 

  22. Gupta, T. & van der Boom, M. E. Redox-active monolayers as a versatile platform for integrating boolean logic gates. Angew. Chem. Int. Ed. 47, 5322–5326 (2008).

    Article  CAS  Google Scholar 

  23. de Silva, A. P. Molecular computing: a layer of logic. Nature 454, 417–418 (2008).

    Article  Google Scholar 

  24. Ballester, M., Riera, J., Castañer, J., Badia, C. & Monso, J. M.. Inert carbon free radicals. I. Perchlorodiphenylmethyl and perchlorotriphenylmethyl radical series. J. Am. Chem. Soc. 93, 2215–2225 (1971).

    Article  CAS  Google Scholar 

  25. Crivillers, N. et al. Self-assembled monolayers of a multifunctional organic radical. Angew. Chem. Int. Ed. 46, 2215–2219 (2007).

    Article  CAS  Google Scholar 

  26. Crivillers, N., Mas-Torrent, M., Vidal-Gancedo, J., Veciana, J. & Rovira, C. Self-assembled monolayers of electroactive polychlorotriphenylmethyl radicals on Au(111). J. Am. Chem. Soc. 130, 5499–5506 (2008).

    Article  CAS  Google Scholar 

  27. Crivillers, N. et al. Dramatic influence of the electronic structure on the conductivity through open- and closed-shell molecules. Adv. Mater. 21, 1177–1181 (2009).

    Article  CAS  Google Scholar 

  28. Ballester, M. et al. Inert carbon free radicals. 7. ‘The (kinetic) reverse effect’ and relevant synthesis of new monofunctionalized triphenylmethyl radicals and their nonradical counterparts. J. Org. Chem. 47, 2472–2480 (1986).

    Article  Google Scholar 

  29. Armet, O. et al. Inert carbon free radicals. 8. Polychlorotriphenylmethyl radicals. Synthesis, structure, and spin-density distribution. J. Phys. Chem. 91, 5608–5616 (1987).

    Article  CAS  Google Scholar 

  30. Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical system. J. Electroanal. Chem. 101, 19–28 (1979).

    Article  CAS  Google Scholar 

  31. El Kasmi, A. et al. Adsorptive immobilization of cytochrome c on indium/tin oxide (ITO): electrochemical evidence for electron transfer-induced conformational changes. Electrochem. Commun. 4, 177–181 (2002).

    Article  CAS  Google Scholar 

  32. Li, J. et al. Characterization of transparent conducting oxide surfaces using self-assembled electroactive monolayers. Langmuir 24, 5755–5765 (2008).

    Article  CAS  Google Scholar 

  33. de Silva, A. P. & Uchiyama, S. Molecular logic and computing. Nature Nanotech. 2, 399–410 (2007).

    Article  CAS  Google Scholar 

  34. de Silva, A. P., James, M. R., McKinney, B. O. F., Pears, D. A. & Weir, S. M. Molecular computational elements encode large populations of small objects. Nature Mater. 5, 787–790 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the European Community's Seventh Framework Programme (FP7/2007-2013; grant 212311 (ONE-P project) and 210355 (OpticalBullet-ERC-StG project)), the Marie Curie Est FuMASSEC, the DGI (Spain) (grants EMOCIONa (CTQ2006-06333), POMAs (CTQ2010-19501) and Opticalswitch (CTQ2008-06160)), the Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), the Generalitat de Catalunya (grants 2009SGR00516 and 2009SGR00277) and the Human Frontier Science Program (HFSP, grant CDA0022/2006). The authors also thank Dr Vidal-Gancedo for his assessment of the EPR measurements, Dr S.T. Bromley for his advice and M. Izquierdo-Serra for help in the preparation of microelectrodes.

Author information

Authors and Affiliations

Authors

Contributions

M.M-T., J.V. and C.R. conceived and designed the experiments. C.S. performed the experiments. N.C. contributed to SAM functionalization. V.L. contributed to EPR experiments. J.M.A. and P.G. contributed to fluorescence microscopy and local switching experiments. C.S. and M.M-T. co-wrote the paper with input from J.V. and C.R.

Corresponding authors

Correspondence to Jaume Veciana or Concepció Rovira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1251 kb)

Supplementary information

Supplementary Movie S1 (AVI 2577 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simão, C., Mas-Torrent, M., Crivillers, N. et al. A robust molecular platform for non-volatile memory devices with optical and magnetic responses. Nature Chem 3, 359–364 (2011). https://doi.org/10.1038/nchem.1013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1013

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing