Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distortion-triggered loss of long-range order in solids with bonding energy hierarchy

Abstract

An amorphous-to-crystal transition in phase-change materials like Ge–Sb–Te is widely used for data storage. The basic principle is to take advantage of the property contrast between the crystalline and amorphous states to encode information; amorphization is believed to be caused by melting the materials with an intense laser or electrical pulse and subsequently quenching the melt. Here, we demonstrate that distortions in the crystalline phase may trigger a collapse of long-range order, generating the amorphous phase without going through the liquid state. We further show that the principal change in optical properties occurs during the distortion of the still crystalline structure, upsetting yet another commonly held belief that attributes the change in properties to the loss of long-range order. Furthermore, our results suggest a way to lower energy consumption by condensing phase change inducing energy into shorter pulses or through the use of coherent phonon excitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Difference in electron charge density for the simulated model of GeTe at 0 K and isolated pseudo-atoms.
Figure 2: Temperature variation of shorter Ge–Te and Sb–Te bond lengths in the metastable cubic phase of Ge2Sb2Te5 determined from an EXAFS analysis.
Figure 3: Configuration-coordinate diagram for the amorphization process of GeTe when the amorphous phase is generated by electronic excitation and subsequent lattice relaxation.

Similar content being viewed by others

References

  1. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  2. Raoux, S., Wełnic, W. & Ielmini, D. Phase change materials and their application to nonvolatile memories. Chem. Rev. 110, 240–267 (2010).

    Article  CAS  Google Scholar 

  3. Ohta, T. & Ovshinsky, S. R. Phase-change optical data storage media, in Photo-Induced Metastability in Amorphous Semiconductors, 310–326 (Wiley-VCH, 2003).

    Chapter  Google Scholar 

  4. Lacaita, A. Phase change memories: state-of-the-art, challenges and perspectives. Sol. State Electron. 50, 24–31 (2006).

    Article  CAS  Google Scholar 

  5. Lencer, D., Salinga, M., Grabowski, B., Hickel, T. & Wuttig, M. A map for phase-change materials. Nature Mater. 7, 972–977 (2008).

    Article  CAS  Google Scholar 

  6. Yamada, N. & Matsunaga, T. Structure of laser-crystallised Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020–7028 (2000).

    Article  CAS  Google Scholar 

  7. Kolobov, A. et al. Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703–708 (2004).

    Article  CAS  Google Scholar 

  8. Shamoto, S. et al. Large displacement of germanium atoms in crystalline Ge2Sb2Te5 . Appl. Phys. Lett. 86, 081904 (2005).

    Article  Google Scholar 

  9. Shayduk, R. & Braun, W. Epitaxial films for Ge–Sb–Te phase change memory. J. Cryst. Growth 311, 2215–2219 (2009).

    Article  CAS  Google Scholar 

  10. Welnic, W. et al. Unravelling the interplay of local structure and physical properties in phase-change materials. Nature Mater. 5, 56–62 (2005).

    Article  Google Scholar 

  11. Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nature Mater. 7, 653–658 (2008).

    Article  CAS  Google Scholar 

  12. Lucovsky, G. & White, R. Effects of resonance bonding on the properties of crystalline and amorphous semiconductors. Phys. Rev. B 8, 660–667 (1973).

    Article  CAS  Google Scholar 

  13. Kohara, S. et al. Structural basis for the fast phase change of Ge2Sb2Te5: ring statistics analogy between the crystal and amorphous states. Appl. Phys. Lett. 89, 201910 (2006).

    Article  Google Scholar 

  14. Caravati, S., Bernasconi, M., Kühne, T., Krack, M. & Parrinello, M. Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials. Appl. Phys. Lett. 91, 171906 (2007).

    Article  Google Scholar 

  15. Baker, D., Paesler, M., Lucovsky, G., Agarwal, S. & Taylor, P. Application of bond constraint theory to the switchable optical memory material Ge2Sb2Te5 . Phys. Rev. Lett. 96, 255501 (2006).

    Article  CAS  Google Scholar 

  16. Akola, J. & Jones, R. Structural phase transitions on the nanoscale: the crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe. Phys. Rev. B 76, 235201 (2007).

    Article  Google Scholar 

  17. Jovari, P. et al. Local order in amorphous Ge2Sb2Te5 and GeSb2Te4 . Phys. Rev. B 77, 035202 (2008).

    Article  Google Scholar 

  18. Hegedüs, J. & Elliott, S. Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials. Nature Mater. 7, 399–405 (2008).

    Article  Google Scholar 

  19. Gaspard, J.-P., Pellegatti, A., Marinelli, F. & Bichara, C. Peierls instability in covalent structures I. electronic structure, cohesion and the Z = 8-N rule. Phil. Mag. B 77, 727–744 (1998).

    Article  CAS  Google Scholar 

  20. deNeufville, J. Chemical aspects of glass formation in telluride systems. J. Non-Crystal. Solids 8, 85–105 (1972).

    Article  Google Scholar 

  21. Rahman, S., Venkata Ramana, M. & Sivarama Sastry, G. Calorimetric measurements on Ge–Bi–Se–Te glasses. J. Mater. Sci. Lett. 10, 792–794 (1991).

    Article  CAS  Google Scholar 

  22. Luo, Y. Comprehensive Handbook of Chemical Bond Energies (CRC, 2007).

    Book  Google Scholar 

  23. Lee, B.-S. et al. Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases. J. Appl. Phys. 97, 093509 (2005).

    Article  Google Scholar 

  24. Kato, T. & Tanaka, K. Electronic properties of amorphous and crystalline Ge2Sb2Te5 films. Jpn J. Appl. Phys. 44, 7340–7344 (2005).

    Article  CAS  Google Scholar 

  25. Mott, N. F. & Davis, E. A. Electronic Processes in Non-Crystalline Materials. 2nd edn (Clarendon Press Oxford, 1979).

    Google Scholar 

  26. Itoh, N. & Stoneham, A. M. Materials Modification by Electronic Excitation (Cambridge Univ. Press, 2001).

    Google Scholar 

  27. Glazov, V., Chizhevskaya, S. & Glagoleva, N. Liquid Semiconductors (Plenum Press, 1969).

    Book  Google Scholar 

  28. Santoh, H., Hongo, Y., Tajima, K., Konishi, M. & Saiki, T. Sub-picosecond non-melting structure change in a GeSbTe film induced by femtosecond pulse excitation, in Proceedings of the 2009 EPCOS Meeting, Aachen Germany (2009).

    Google Scholar 

  29. Makino, K., Tominaga, J. & Hase, M. Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials. Opt. Express 19, 1260–1270 (2011).

    Article  CAS  Google Scholar 

  30. Poborchii, V. V., Kolobov, A. V. & Tanaka, K. Photomelting of selenium at low temperature. Appl. Phys. Lett. 74, 215–217 (1999).

    Article  CAS  Google Scholar 

  31. Roy, A., Kolobov, A. & Tanaka, K. Laser-induced suppression of photocrystallization rate in amorphous selenium films. J. Appl. Phys. 83, 4951–4956 (1998).

    Article  CAS  Google Scholar 

  32. Elliott, S. & Kolobov, A. Athermal light-induced vitrification of As50Se50 films. J. Non-Crystal. Solids 128, 216–220 (1991).

    Article  CAS  Google Scholar 

  33. Frumar, M., Firth, A. & Owen, A. Optically induced crystal-to-amorphous transition in As2S3 . J. Non-Crystal. Solids 192, 447 (1995).

    Article  Google Scholar 

  34. Fons, P. et al. Photoassisted amorphization of the phase-change memory alloy Ge2Sb2Te5 . Phys. Rev. B 82, 041203 (2010).

    Article  Google Scholar 

  35. Shimakawa, K., Kolobov, A. & Elliott, S. Photoinduced effects and metastability in amorphous semiconductors and insulators. Adv. Phys. 44, 475–588 (1995).

    Article  CAS  Google Scholar 

  36. Hisakuni, H. & Tanaka, K. Optical microfabrication of chalcogenide glasses. Science 270, 974–975 (1995).

    Article  CAS  Google Scholar 

  37. Yannopoulos, S. & Trunov, M. Photoplastic effects in chalcogenide glasses: a review. Phys. Status Solids (b) 246, 1773–1785 (2009).

    Article  CAS  Google Scholar 

  38. Lyubin, V. & Klebanov, M. Photoinduced generation and reorientation of linear dichroism in AsSe glassy films. Phys. Rev. B 53, 11924–11926 (1996).

    Article  Google Scholar 

  39. Krecmer, P. et al. Reversible nanocontraction and dilatation in a solid induced by polarized light. Science 277, 1799–1802 (1997).

    Article  CAS  Google Scholar 

  40. Saliminia, A., Galstian, T. V. & Villeneuve, A. Optical field-induced mass transport in As2S3 chalcogenide glasses. Phys. Rev. Lett. 85, 4112–4115 (2000).

    Article  CAS  Google Scholar 

  41. Trunov, M. Polarization-dependent laser-induced giant mass transport in glassy semiconductors. JETP Lett. 86, 313–316 (2007).

    Article  CAS  Google Scholar 

  42. Shi, L. Optical memory: from 1st to 3rd generation and its future, in Phase-Change Materials: Science and Applications, 251–284 (Springer, 2009).

    Chapter  Google Scholar 

  43. Huang, B. & Robertson, J. Bonding origin of optical contrast in phase-change memory materials. Phys. Rev. B 81, 081204R (2010).

    Article  Google Scholar 

  44. Burr, G. W. et al. Phase change memory technology. J. Vac. Sci. Technol. B 28, 223–262 (2010).

    Article  CAS  Google Scholar 

  45. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  46. Clark, S. et al. First principles methods using CASTEP. Zeitschrift fürr Kristallographie 220, 567–570 (2005).

    CAS  Google Scholar 

  47. Ceperley, D. & Alder, B. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980).

    Article  CAS  Google Scholar 

  48. Perdew, J. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

    Article  CAS  Google Scholar 

  49. Pfrommer, B. G., Cote, M., Louie, S. G. & Cohen, M. L. Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131, 133–140 (1997).

    Article  Google Scholar 

  50. Caravati, S., Bernasconi, M., Kuehne, T., Krack, M. & Parrinello, M. Unravelling the mechanism of pressure induced amorphization of phase change materials. Phys. Rev. Lett. 102, 205502 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by the New Energy and Industrial Technology Development Organization project ‘Research and Development of Nanoelectronic Device Technology’. The EXAFS measurements were performed as part of 2008B1249 proposal. M.K. acknowledges his Japan Society for the Promotion of Science Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by A.V.K. as a result of discussions with J.T. and P.F. EXAFS measurements were done jointly by P.F., A.V.K. and T.U. The data analysis was performed by A.V.K. and P.F. DFT modelling was carried out by A.V.K., M.K. and P.F. The manuscript was written by A.V.K.; all authors commented on the manuscript.

Corresponding author

Correspondence to A.V. Kolobov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolobov, A., Krbal, M., Fons, P. et al. Distortion-triggered loss of long-range order in solids with bonding energy hierarchy. Nature Chem 3, 311–316 (2011). https://doi.org/10.1038/nchem.1007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1007

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing