Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gradient-driven motion of multivalent ligand molecules along a surface functionalized with multiple receptors


The kinetics of multivalent (multisite) interactions at interfaces is poorly understood, despite its fundamental importance for molecular or biomolecular motion and molecular recognition events at biological interfaces. Here, we use fluorescence microscopy to monitor the spreading of mono-, di- and trivalent ligand molecules on a receptor-functionalized surface, and perform multiscale computer simulations to understand the surface diffusion mechanisms. Analogous to chemotaxis, we found that the spreading is directional (along a developing gradient of vacant receptor sites) and is strongly dependent on ligand valency and concentration of a competing monovalent receptor in solution. We identify multiple surface diffusion mechanisms, which we call walking, hopping and flying. The study shows that the interfacial behaviour of multivalent systems is much more complex than that of monovalent ones.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Guest and host compounds, divalent thermodynamic equilibria and kinetic pathways.
Figure 2: Evaluation of spreading rates.
Figure 3: Themodynamic equilibrium concentrations and representation of rebinding probability.
Figure 4: Monte Carlo simulations.


  1. 1

    Thibault-Starzyk, F., Seguin, E., Thomas, S. Daturi, M., Arnolds, H. & King, D. A. Real-time infrared detection of cyanide flip on silver-alumina NOx removal catalyst. Science 324, 1048–1051 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Backus, E. H. G., Eichler, A., Kleyn, A. W. & Bonn, M. Real-time observation of molecular motion on a surface. Science 310, 1790–1793 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. & Howard, J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115–119 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Hess, H., Clemmens, J., Qin, D., Howard, J. & Vogel, V. Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Lett. 1, 235–239 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Goel, A. & Vogel, V. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nature Nanotech. 3, 465–475 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Gu, H., Chao, J., Xiao, S.-J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nature Chem. 2, 96–101 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Berna, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Kelly, T. R. Molecular motors: synthetic DNA-based walkers inspired by kinesin. Angew. Chem. Int. Ed. 44, 4124–4127 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Badjic, J. D., Balzani, V., Credi, A., Silvi, S. & Stoddart, J. F. A molecular elevator. Science 303, 1845–1849 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Feringa, B. L. In control of motion: from molecular switches to molecular motors. Acc. Chem. Res. 34, 504–513 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Sakai, N. & Matile, S. G-quartet self-assembly under osmotic pressure: remote control by vesicle shrinking rather than stress. Chirality 15, 766–771 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Ueda, M., Sako, Y., Tanaka, T., Devreotes, P. & Yanagida, T. Single-molecule analysis of chemotactic signaling in dictyostelium cells. Science 294, 864–867 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Kim, M. S., Khang, G. & Lee, H. B. Gradient polymer surfaces for biomedical applications. Prog. Polym. Sci. 33, 138–164 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Chang, T., Rozkiewicz, D. I., Ravoo, B. J., Meijer, E. W. & Reinhoudt, D. N. Directional movement of dendritic macromolecules on gradient surfaces. Nano Lett. 7, 978–980 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Burgos, P., Zhang, Z., Golestanian, R., Leggett, G. J. & Geoghegan, M. Directed single molecule diffusion triggered by surface energy gradients. ACS Nano 3, 3235–3243 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Tauk, L., Schroder, A. P., Decher, G. & Giuseppone, N. Hierarchical functional gradients of pH-responsive self-assembled monolayers using dynamic covalent chemistry on surfaces. Nature Chem. 1, 649–656 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Kiessling, L. L., Gestwicki, J. E. & Strong, L. E. Synthetic multivalent ligands as probes of signal transduction. Angew. Chem. Int. Ed. 45, 2348–2368 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Mammen, M., Choi, S. K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998).

    Article  Google Scholar 

  22. 22

    Huskens, J. et al. A model for describing the thermodynamics of multivalent host–guest interactions at interfaces. J. Am. Chem. Soc. 126, 6784–6797 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Houseman, B. T. & Mrksich, M. Model systems for studying polyvalent carbohydrate binding interactions, in Host–Guest Chemistry: mimetic approaches to study carbohydrate recognition (Topics in Current Chemistry) Vol. 218 (ed. Penades, S.) 1–44 (Springer, 2002).

    Google Scholar 

  24. 24

    Ludden, M. J. W., Reinhoudt, D. N. & Huskens, J. Molecular printboards: versatile platforms for the creation and positioning of supramolecular assemblies and materials. Chem. Soc. Rev. 35, 1122–1134 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Rao, J. H., Lahiri, J., Isaacs, L., Weis, R. M. & Whitesides, G. M. A trivalent system from vancomycin–D-Ala–D-Ala with higher affinity than avidin–biotin. Science 280, 708–711 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Badjić, J. D., Cantrill, S. J. & Stoddart, J. F. Can multivalency be expressed kinetically? The answer is yes. J. Am. Chem. Soc. 126, 2288–2289 (2004).

    Article  Google Scholar 

  27. 27

    Onclin, S., Mulder, A., Huskens, J., Ravoo, B. J. & Reinhoudt, D. N. Molecular printboards: monolayers of β-cyclodextrins on silicon oxide surfaces. Langmuir 20, 5460–5466 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Antczak, G. & Ehrlich, G. Jump processes in surface diffusion. Surf. Sci. Rep. 62, 39–61 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Hla, S.-W. Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology. J. Vac. Sci. Technol. B 23, 1351–1360 (2005).

    CAS  Article  Google Scholar 

  30. 30

    Thompson, D. & Larsson, J. A. Modeling competitive guest binding to β-cyclodextrin molecular printboards. J. Phys. Chem. B 110, 16640–16645 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Thompson, D. Free energy balance predicates dendrimer binding multivalency at molecular printboards. Langmuir 23, 8441–8451 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Cieplak, M. & Thompson, D. Coarse-grained molecular dynamics simulations of nanopatterning with multivalent inks. J. Chem. Phys. 128, 234906 (2008).

    Article  Google Scholar 

Download references


This research was supported by the European FP6 Integrated project NaPa (A.P., H.D., J.H.; contract no. NMP4-CT-2003-500120) and by the Nanotechnology network in the Netherlands NanoNed (AGC; project no. TPC.6939). D.T. also acknowledges support from the European FP7 project FunMol (grant agreement no. 213382), Science Foundation Ireland (SFI) for computing resources at Tyndall National Institute and SFI/ Higher Education Authority for computing time at the Irish Centre for High-End Computing (ICHEC). The authors thank J. Opheusden for discussion of the Monte Carlo simulations.

Author information




A.P., A.G.C., P.J., D.N.R. and J.H. conceived and designed the experiments. A.P. and H.H.D. performed the experimental work. A.G.C. and D.T. performed the modelling. J.H. was responsible for the overall design, direction and supervision of the project. A.P., D.T., P.J., D.N.R. and J.H. co-wrote the paper.

Corresponding author

Correspondence to Jurriaan Huskens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1746 kb)

Supplementary information

Supplementary Movie S1 (MPG 9903 kb)

Supplementary information

Supplementary Movie S2 (MPG 6454 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perl, A., Gomez-Casado, A., Thompson, D. et al. Gradient-driven motion of multivalent ligand molecules along a surface functionalized with multiple receptors. Nature Chem 3, 317–322 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing