Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Translokin is an intracellular mediator of FGF-2 trafficking

Abstract

Basic fibroblast growth factor (bFGF or FGF-2) exerts its pleiotropic activities both as an exogenous and an intracellular factor. FGF-1 and FGF-2 are prototypes for this dual signalling, but the mechanisms of their intracellular actions remain unknown. Here we show that Translokin, a cytoplasmic protein of relative molecular mass 55,000 (Mr 55K), interacts specifically with the 18K form of FGF-2. Translokin is ubiquitously expressed and colocalizes with the microtubular network. As Translokin does not interact with FGF-1, we used a strategy based on FGF-1–FGF-2 chimaeras to map the interacting regions in FGF-2 and to generate Nb1a2, a non-interacting variant of FGF-2. Although most of the FGF-2 properties are preserved in Nb1a2, this variant is defective in intracellular translocation and in stimulating proliferation. The fusion of a nuclear localization signal to Nb1a2 restores its mitogenic activity and its nuclear association. Inhibiting Translokin expression by RNA interference reduces the translocation of FGF-2 without affecting the intracellular trafficking of FGF-1. Our data show that the nuclear association of internalized FGF-2 is essential for its mitogenic activity and that Translokin is important in this translocation pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of Translokin, an FGF-2-interacting protein.
Figure 2: Specific and direct interaction between Translokin and FGF-2.
Figure 3: Characterization of FGF-2–FGF-1 chimaeras.
Figure 4: FGF-2 intracellular localization.
Figure 5: Recovery of Nb1a2 mitogenic activity and inhibition of FGF-2.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ornitz, D.M. & Itoh, N. Fibroblast growth factors. Genome Biol. 2, 3005.1–3005.12 (2001). http://genomebiology.com/2001/2/3/reviews/3005

    Article  Google Scholar 

  2. Bikfalvi, A., Klein, S., Pintucci, G. & Rifkin, D.B. Biological roles of fibroblast growth factor-2. Endocr. Rev. 18, 26–45 (1997).

    CAS  PubMed  Google Scholar 

  3. Prats, H. et al. High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc. Natl Acad. Sci. USA 86, 1836–1840 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arnaud, E. et al. A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol. Cell. Biol. 19, 505–514 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bugler, B., Amalric, F. & Prats, H. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol. Cell. Biol. 11, 573–577 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson, D.E. & Williams, L.T. Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res. 60, 1–41 (1993).

    CAS  PubMed  Google Scholar 

  7. Cross, M.J. & Claesson-Welsh, L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 22, 201–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Reiland, J. & Rapraeger, A.C. Heparan sulfate proteoglycan and FGF receptor target basic FGF to different intracellular destinations. J. Cell Sci. 105, 1085–1093 (1993).

    CAS  PubMed  Google Scholar 

  9. Roghani, M. & Moscatelli, D. Basic fibroblast growth factor is internalized through both receptor-mediated and heparan sulfate-mediated mechanisms. J. Biol. Chem. 267, 22156–22162 (1992).

    CAS  PubMed  Google Scholar 

  10. Baldin, V., Roman, A.M., Bosc-Bierne, I., Amalric, F. & Bouche, G. Translocation of bFGF to the nucleus is G1 phase cell cycle specific in bovine aortic endothelial cells. EMBO J. 9, 1511–1517 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patry, V., Arnaud, E., Amalric, F. & Prats, H. Involvement of basic fibroblast growth factor NH2 terminus in nuclear accumulation. Growth Factors 11, 163–174 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Patry, V., Bugler, B., Maret, A., Potier, M. & Prats, H. Endogenous basic fibroblast growth factor isoforms involved in different intracellular protein complexes. Biochem. J. 326, 259–264 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagase, T. et al. Prediction of the coding sequences of unidentified human genes. III. The coding sequences of 40 new genes (KIAA0081–KIAA0120) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 2, 37–43 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Bailly, K., Soulet, F., Leroy, D., Amalric, F. & Bouche, G. Uncoupling of cell proliferation and differentiation activities of basic fibroblast growth factor. FASEB J. 14, 333–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Zhu, X. et al. Three-dimensional structures of acidic and basic fibroblast growth factors. Science 251, 90–93 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Pages, G. et al. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc. Natl Acad. Sci. USA 90, 8319–8323 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kanda, S. et al. Phosphatidylinositol 3′-kinase-independent p70S6 kinase activation by fibroblast growth factor receptor-1 is important for proliferation but not differentiation of endothelial cells. J. Biol. Chem. 272, 23347–23353 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Bouche, G. et al. Basic fibroblast growth factor enters the nucleolus and stimulates the transcription of ribosomal genes in ABAE cells undergoing G0–G1 transition. Proc. Natl Acad. Sci. USA 84, 6770–6774 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clarke, W.E., Berry, M., Smith, C., Kent, A. & Logan, A. Coordination of fibroblast growth factor receptor 1 (FGFR1) and fibroblast growth factor-2 (FGF-2) trafficking to nuclei of reactive astrocytes around cerebral lesions in adult rats. Mol. Cell. Neurosci. 17, 17–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Joy, A. et al. Nuclear accumulation of FGF-2 is associated with proliferation of human astrocytes and glioma cells. Oncogene 14, 171–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Keresztes, M. & Boonstra, J. Import(ance) of growth factors in(to) the nucleus. J. Cell Biol. 145, 421–424 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Imamura, T. et al. Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science 249, 1567–1570 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Wiedlocha, A., Falnes, P.O., Madshus, I.H., Sandvig, K. & Olsnes, S. Dual mode of signal transduction by externally added acidic fibroblast growth factor. Cell 76, 1039–1051 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Bonnet, H. et al. Fibroblast growth factor-2 binds to the regulatory β subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J. Biol. Chem. 271, 24781–24787 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Skjerpen, C.S., Nilsen, T., Wesche, J. & Olsnes, S. Binding of FGF-1 variants to protein kinase CK2 correlates with mitogenicity. EMBO J. 21, 4058–4069 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Shen, B., Arese, M., Gualandris, A. & Rifkin, D.B. Intracellular association of FGF-2 with the ribosomal protein L6/TAXREB107. Biochem. Biophys. Res. Commun. 252, 524–528 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Van den Berghe, L . et al. FIF [fibroblast growth factor-2 (FGF-2)-interacting-factor], a nuclear putatively antiapoptotic factor, interacts specifically with FGF-2. Mol. Endocrinol. 14, 1709–1724 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Reilly, J.F. & Maher, P.A. Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J. Cell Biol. 152, 1307–1312 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gleizes, P.E., Noaillac-Depeyre, J., Dupont, M.A. & Gas, N. Basic fibroblast growth factor (FGF-2) is addressed to caveolae after binding to the plasma membrane of BHK cells. Eur. J. Cell Biol. 71, 144–153 (1996).

    CAS  PubMed  Google Scholar 

  31. Kudla, A.J. et al. The FGF receptor-1 tyrosine kinase domain regulates myogenesis but is not sufficient to stimulate proliferation. J. Cell Biol. 142, 241–250 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huez, I., Bornes, S., Bresson, D., Creancier, L. & Prats, H. New vascular endothelial growth factor isoform generated by internal ribosome entry site-driven CUG translation initiation. Mol. Endocrinol. 15, 2197–2210 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Estival, A. et al. Differential regulation of fibroblast growth factor (FGF) receptor-1 mRNA and protein by two molecular forms of basic FGF. Modulation of FGFR-1 mRNA stability. J. Biol. Chem. 271, 5663–5670 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Bouche for HA–FGF-2 plasmid; D. Bresson and B. Knibiehler for technical advice; and B. Bugler, C. Touriol, A. C. Prats and F. Bayard for discussions and critically reading the manuscript. C.B. was supported by the Association pour la Recherche contre le Cancer; H.L. was supported by an INSERM fellowship. This work was supported by the Association pour la Recherche contre le Cancer and the Ligue Nationale contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Prats.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure

Figure S1. Translokin expression is ubiquitous (PDF 833 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bossard, C., Laurell, H., Van den Berghe, L. et al. Translokin is an intracellular mediator of FGF-2 trafficking. Nat Cell Biol 5, 433–439 (2003). https://doi.org/10.1038/ncb979

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb979

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing