Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis

Abstract

The mitochondrial localization of the membrane proteins Bcl-2 and Bcl-xL is essential for their anti-apoptotic function. Here we show that mitochondrial FK506-binding protein 38 (FKBP38), unlike FKBP12, binds to and inhibits calcineurin in the absence of the immunosuppressant FK506, suggesting that FKBP38 is an inherent inhibitor of this phosphatase. FKBP38 is associated with Bcl-2 and Bcl-xL in immunoprecipitation assays and colocalizes with these proteins in mitochondria; in addition, the expression of FKBP38 mutant proteins induces a marked redistribution of Bcl-2 and Bcl-xL. Overexpression of FKBP38 blocks apoptosis, whereas functional inhibition of this protein by a dominant-negative mutant or by RNA interference promotes apoptosis. Thus, FKBP38 might function to inhibit apoptosis by anchoring Bcl-2 and Bcl-xL to mitochondria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association of FKBP38 with Bcl-2 and Bcl-xL.
Figure 2: FKBP38 interacts with calcineurin in the absence of FK506.
Figure 3: Inhibition of calcineurin activity by FKBP38.
Figure 4: Colocalization of FKBP38 with Bcl-2 and Bcl-xL in mitochondria.
Figure 5: Mitochondrial targeting of Bcl-2 and Bcl-xL by FKBP38.
Figure 6: Anti-apoptotic action of FKBP38.
Figure 7: Functional suppression of FKBP38 by siRNA.

Similar content being viewed by others

References

  1. Liu, J. et al. Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP–FK506 complexes. Cell 66, 807–815 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Griffith, J. P. et al. X-ray structure of calcineurin inhibited by the immunophilin–immunosuppressant FKBP12–FK506 complex. Cell 82, 507–522 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Kissinger, C. R. et al. Crystal structures of human calcineurin and the human FKBP12–FK506–calcineurin complex. Nature 378, 641–644 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, H. G. et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284, 339–343 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Shibasaki, F. & McKeon, F. Calcineurin functions in Ca2+-activated cell death in mammalian cells. J. Cell Biol. 131, 735–743 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Sharkey, J. & Butcher, S. P. Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia. Nature 371, 336–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Ankarcrona, M., Dypbukt, J. M., Orrenius, S. & Nicotera, P. Calcineurin and mitochondrial function in glutamate-induced neuronal cell death. FEBS Lett. 394, 321–324 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Kantrow, S. P. et al. Regulation of tumor necrosis factor cytotoxicity by calcineurin. FEBS Lett. 483, 119–124 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Lam, E., Martin, M. & Wiederrecht, G. Isolation of a cDNA encoding a novel human FK506-binding protein homolog containing leucine zipper and tetratricopeptide repeat motifs. Gene 160, 297–302 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Pedersen, K. M., Finsen, B., Celis, J. E. & Jensen, N. A. MuFKBP38: a novel murine immunophilin homolog differentially expressed in Schwannoma cells and central nervous system neurons in vivo. Electrophoresis 20, 249–255 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Schiene-Fischer, C. & Yu, C. Receptor accessory folding helper enzymes: the functional role of peptidyl prolyl cis/trans isomerases. FEBS Lett. 495, 1–6 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Vander Heiden, M. G. & Thompson, C. B. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nature Cell Biol. 1, E209–E216 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Kroemer, G. & Reed, J. C. Mitochondrial control of cell death. Nature Med. 6, 513–519 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Green, D. R. Apoptotic pathways: paper wraps stone blunts scissors. Cell 102, 1–4 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Ferri, K. F. & Kroemer, G. Mitochondria — the suicide organelles. BioEssays 23, 111–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Nakayama, K.-I. et al. Disappearance of the lymphoid system in Bcl-2 homozygous mutant chimeric mice. Science 261, 1584–1588 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Nakayama, K. et al. Targeted disruption of Bcl-2αβ in mice: occurrence of gray hair, polycystic kidney disease, and lymphocytopenia. Proc. Natl Acad. Sci. USA 91, 3700–3704 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. D. & Korsmeyer, S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334–336 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Krajewski, S. et al. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 53, 4701–4714 (1993).

    CAS  PubMed  Google Scholar 

  21. Gonzalez-Garcia, M. et al. Bcl-XL is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria. Development 120, 3033–3042 (1994).

    CAS  PubMed  Google Scholar 

  22. Yang, E. et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285–291 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL . Cell 87, 619–628 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Wolter, K. G. et al. Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol. 139, 1281–1292 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Li, H., Zhu, H., Xu, C. J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Puthalakath, H., Huang, D. C., O'Reilly, L. A., King, S. M. & Strasser, A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 3, 287–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Crabtree, G. R. Calcium, calcineurin, and the control of transcription. J. Biol. Chem. 276, 2313–2316 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Crabtree, G. R. & Olson, E. N. NFAT signaling: choreographing the social lives of cells. Cell 109, S67–S79 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Shibasaki, F., Kondo, E., Akagi, T. & McKeon, F. Suppression of signalling through transcription factor NF-AT by interactions between calcineurin and Bcl-2. Nature 386, 728–731 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Horie, C., Suzuki, H., Sakaguchi, M. & Mihara, K. Characterization of signal that directs C-tail anchored proteins to mammalian mitochondrial outer membrane. Mol. Biol. Cell 13, 1615–1625 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Antonsson, B. et al. Inhibition of Bax channel-forming activity by Bcl-2. Science 277, 370–372 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome cby the mitochondrial channel VDAC. Nature 399, 483–487 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Ngyen, M., Millar, D. G., Yong, V. W. & Korsmeyer, S. J. Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J. Biol. Chem. 268, 25265–25268 (1993).

    Google Scholar 

  35. Alnemri, E. S., Robertson, N. M., Fernandes, T. F., Croce, C. M. & Litwack, G. Overexpressed full-length human BCL2 extends the survival of baculovirus-infected Sf9 insect cells. Proc. Natl Acad. Sci. USA 89, 7295–7299 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L. & Korsmeyer, S. J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241–251 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Tanaka, S., Saito, K. & Reed, J. C. Structure–function analysis of the Bcl-2 oncoprotein. J. Biol. Chem. 268, 10920–10926 (1993).

    CAS  PubMed  Google Scholar 

  38. Blatch, G. L. & Lassle, M. The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. BioEssays 21, 932–939 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Galigniana, M. D., Radanyi, C., Renoir, J. M., Housley, P. R. & Pratt, W. B. Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus. J. Biol. Chem. 276, 14884–14889 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Allison, A. C. Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology 47, 63–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Brillantes, A. B. et al. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77, 513–523 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Cameron, A. M. et al. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor–FKBP12 complex modulates Ca2+ flux. Cell 83, 463–472 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, T., Donahoe, P. K. & Zervos, A. S. Specific interaction of type I receptors of the TGF-β family with the immunophilin FKBP-12. Science 265, 674–676 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Hamilton, G. S. & Steiner, J. P. Immunophilins: beyond immunosuppression. J. Med. Chem. 41, 5119–5143 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Lyons, W. E., George, E. B., Dawson, T. M., Steiner, J. P. & Snyder, S. H. Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory ganglia. Proc. Natl Acad. Sci. USA 91, 3191–3195 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sussman, M. A. et al. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281, 1690–1693 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Stemmer, P. & Klee, C. B. Serine/threonine phosphatases in the nervous system. Curr. Opin. Neurobiol. 1, 53–64 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Shirane, M., Hatakeyama, S., Hattori, K., Nakayama, K. & Nakayama, K.-I. Common pathway for the ubiquitination of IκBα, IκBβ, and IκBɛ mediated by the F-box protein FWD1. J. Biol. Chem. 274, 28169–28174 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Nicoletti, I., Migliorati, G., Pagliacci, M. C., Grignani, F. & Riccardi, C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139, 271–279 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Tsujimoto for the Bcl-2 cDNA; S. Fields for the pBTM116 vector; T. Kitamura for the pMX-puro vector; G. Crabtree for the calcineurin cDNAs; N. Motoyama for the Bcl-xL cDNA; F. Shibasaki for the GFP–NF-AT4 expression vector (pcDNA3–CAG–GFP–Myc–NF-AT4-N); H. Yokoi for the Cyp40 cDNA; K. Mihara for GFP–Tom20 and Omp25 cDNA; Fujisawa Pharmaceuticals for FK506; Y. Gotoh, N. Takahashi, D. Kohda and A. Yamanaka for discussion; R. Yasukohchi, N. Nishimura and K. Mori for technical assistance; and M. Kimura and C. Sugita for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi I. Nakayama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure

Figure S1. Vimentin is secreted via the classical ER/Golgi pathway. (PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirane, M., Nakayama, K. Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis. Nat Cell Biol 5, 28–37 (2003). https://doi.org/10.1038/ncb894

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb894

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing