Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites

Abstract

It is unknown how Legionella pneumophila cells escape the degradative lysosomal pathway after phagocytosis by macrophages and replicate in an organelle derived from the endoplasmic reticulum. Here we show that, after internalization, L. pneumophila-containing phagosomes recruit early secretory vesicles. Once L. pneumophila phagosomes have intercepted early secretory vesicles they begin to acquire proteins residing in transitional and rough endoplasmic reticulum. The functions of Sar1 and ADP-ribosylation factor-1 are important for biogenesis of the L. pneumophila replicative organelle. These data indicate that L. pneumophila intercepts vesicular traffic from endoplasmic-reticulum exit sites to create an organelle that permits intracellular replication and prevents destruction by the host cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biphasic maturation of LCPs into ER-derived organelles.
Figure 2: LCPs intercept early secretory vesicles exiting from the ER.
Figure 3: LCPs interact with tER.
Figure 4: ER exit sites are juxtaposed to GFP–p58-positive LCPs.
Figure 5: BFA inhibits an early event in biogenesis of the L. pneumophila replicative organelle.
Figure 6: Productive ER exit sites are important for replicative organelle biogenesis.
Figure 7: Productive ER exit sites are not required for ARF1 recruitment to LCPs.
Figure 8: LCPs intercept early secretory vesicles to create a stable vacuole that resists fusion with late endosomes.

Similar content being viewed by others

References

  1. Tilney, L. G., Harb, O. S., Connelly, P. S., Robinson, C. G. & Roy, C. R. How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J. Cell Sci. 114, 4637–4650 (2001).

    CAS  PubMed  Google Scholar 

  2. Katz, S. M. & Hashemi, S. Electron microscopic examination of the inflammatory response to Legionella pneumophila in guinea pigs. Lab. Invest. 46, 24–32 (1982).

    CAS  PubMed  Google Scholar 

  3. Horwitz, M. A. Formation of a novel phagosome by the Legionnaires' disease bacterium (Legionella pneumophila) in human monocytes. J. Exp. Med. 158, 1319–1331 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Abu Kwaik, Y. The phagosome containing Legionella pneumophila within the protozoan Hartmannella vermiformis is surrounded by the rough endoplasmic reticulum. Appl. Environ. Microbiol. 62, 2022–2028 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Swanson, M. S. & Isberg, R. R. Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect. Immun. 63, 3609–3620 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vogel, J. P., Andrews, H. L., Wong, S. K. & Isberg, R. R. Conjugative transfer by the virulence system of Legionella pneumophila. Science 279, 873–876 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Segal, G., Purcell, M. & Shuman, H. A. Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc. Natl Acad. Sci. USA 95, 1669–1674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coers, J., Monahan, C. & Roy, C. R. Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth. Nature Cell Biol. 1, 451–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A. & Roy, C. R. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295, 679–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Wiater, L. A., Dunn, K., Maxfield, F. R. & Shuman, H. A. Early events in phagosome establishment are required for intracellular survival of Legionella pneumophila. Infect. Immun. 66, 4450–4460 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Roy, C. R., Berger, K. & Isberg, R. R. Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol. Microbiol. 28, 663–674 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Coers, J. et al. Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Mol. Microbiol. 38, 719–736 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Roderick, H. L., Campbell, A. K. & Llewellyn, D. H. Nuclear localisation of calreticulin in vivo is enhanced by its interaction with glucocorticoid receptors. FEBS Lett. 405, 181–185 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Blum, R. et al. Intracellular localization and in vivo trafficking of p24A and p23. J. Cell Sci. 112, 537–548 (1999).

    CAS  PubMed  Google Scholar 

  15. Lord, J. M. & Roberts, L. M. Toxin entry: retrograde transport through the secretory pathway. J. Cell Biol. 140, 733–736 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Linstedt, A. D. & Hauri, H. P. Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kDa. Mol. Biol. Cell 4, 679–693 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seelig, H. P. et al. Molecular genetic analyses of a 376-kilodalton Golgi complex membrane protein (giantin). Mol. Cell. Biol. 14, 2564–2576 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sonnichsen, B. et al. A role for giantin in docking COPI vesicles to Golgi membranes. J. Cell Biol. 140, 1013–1021 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hauri, H. P., Kappeler, F., Andersson, H. & Appenzeller, C. ERGIC-53 and traffic in the secretory pathway. J. Cell Sci. 113, 587–596 (2000).

    CAS  PubMed  Google Scholar 

  20. Lahtinen, U., Hellman, U., Wernstedt, C., Saraste, J. & Pettersson, R. F. Molecular cloning and expression of a 58-kDa cis-Golgi and intermediate compartment protein. J. Biol. Chem. 271, 4031–4037 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Scales, S. J., Pepperkok, R. & Kreis, T. E. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90, 1137–1148 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Ward, T. H., Polishchuk, R. S., Caplan, S., Hirschberg, K. & Lippincott-Schwartz, J. Maintenance of Golgi structure and function depends on the integrity of ER export. J. Cell Biol. 155, 557–570 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cole, N. B., Sciaky, N., Marotta, A., Song, J. & Lippincott-Schwartz, J. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell 7, 631–650 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hammond, A. T. & Glick, B. S. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol. Biol. Cell 11, 3013–3030 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Donaldson, J. G., Finazzi, D. & Klausner, R. D. Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360, 350–352 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Kuehn, M. J., Herrmann, J. M. & Schekman, R. COPII–cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 391, 187–190 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Aridor, M. et al. The Sar1 GTPase coordinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. J. Cell Biol. 152, 213–229 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aridor, M., Bannykh, S. I., Rowe, T. & Balch, W. E. Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J. Cell Biol. 131, 875–893 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Gagnon, E. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Khelef, N., Shuman, H. A. & Maxfield, F. R. Phagocytosis of wild-type Legionella pneumophila occurs through a wortmannin-insensitive pathway. Infect. Immun. 69, 5157–5161 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ramachandra, L. & Harding, C. V. Phagosomes acquire nascent and recycling class II MHC molecules but primarily use nascent molecules in phagocytic antigen processing. J. Immunol. 164, 5103–5112 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Naviaux, R. K., Costanzi, E., Haas, M. & Verma, I. M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Al-Awar, O., Radhakrishna, H., Powell, N. N. & Donaldson, J. G. Separation of membrane trafficking and actin remodeling functions of ARF6 with an effector domain mutant. Mol. Cell. Biol. 20, 5998–6007 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Celada, A., Gray, P. W., Rinderknecht, E. & Schreiber, R. D. Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity. J. Exp. Med. 160, 55–74 (1984).

    Article  CAS  PubMed  Google Scholar 

  36. Joiner, K. A., Fuhrman, S. A., Miettinen, H. M., Kasper, L. H. & Mellman, I. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 249, 641–646 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Hammond, C. & Helenius, A. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J. Cell Biol. 126, 41–52 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Shugrue, C. A. et al. Identification of the putative mammalian orthologue of Sec31P, a component of the COPII coat. J. Cell Sci. 112, 4547–4556 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Donaldson (plasmids encoding ARF1), F. Gorelick (Sec31 antibodies), J. Lippincott-Schwartz (plasmid encoding GFP–p58), R. Pepperkok (plasmids encoding Sar1) and G. Warren (giantin, calnexin and COPI antibodies) for generously providing reagents, and A. Neild, O. Rossanese, W. Mothes, L. Pelletier and G. Warren for their many helpful discussions. This work was supported by NIH Grant AI41699.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig R. Roy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures

Figure S1. GFP-p58 does not colocalize with phagosomes containing dotA mutants. (PDF 1829 kb)

Figure S2. The effects of nocodazole and BFA on the distribution of GFPp58 in macrophages.

Figure S3 ER exit sites are not found juxtaposed to dotA LCPs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagan, J., Roy, C. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4, 945–954 (2002). https://doi.org/10.1038/ncb883

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb883

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing