Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes

Abstract

Successful reproduction in mammals requires a competent egg, which is formed during meiosis through two assymetrical cell divisions. Here, we show that a recently identified formin homology (FH) gene, formin-2 (Fmn2), is a maternal-effect gene that is expressed in oocytes and is required for progression through metaphase of meiosis I. Fmn2−/− oocytes cannot correctly position the metaphase spindle during meiosis I and form the first polar body. We demonstrate that Fmn2 is required for microtubule-independent chromatin positioning during metaphase I. Fertilization of Fmn2−/− oocytes results in polyploid embryo formation, recurrent pregnancy loss and sub-fertility in Fmn2−/− females. Injection of Fmn2 mRNA into Fmn2-deficient oocytes rescues the metaphase I block. Given that errors in meiotic maturation result in severe birth defects and are the most common cause of chromosomal aneuploidy and pregnancy loss in humans, studies of Fmn2 may provide a better understanding of infertility and birth defects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting of the mouse Fmn2 gene and generation of Fmn2-deficient mice.
Figure 2: Embryos from Fmn2−/− females have heterogeneous morphological alterations.
Figure 3: Expression of Fmn2 is restricted to the ovary oocyte.
Figure 4: Cytoskeletal analysis of oocytes from Fmn2+/+, Fmn2+/− and Fmn2−/− mice.
Figure 5: Fertilization of metaphase I-arrested oocytes results in polyploidy.

Similar content being viewed by others

References

  1. Matova, N. & Cooley, L. Comparative aspects of animal oogenesis. Dev. Biol. 231, 291–320 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Elvin, J. A. & Matzuk, M. M. Mouse models of ovarian failure. Rev. Reprod. 3, 183–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Albertini, D. F. & Carabatsos, M. J. Comparative aspects of meiotic cell cycle control in mammals. J. Mol. Med. 76, 795–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Wassarman, P. M. & Albertini, D. F. The mammalian ovum in The Physiology of Reproduction, 2nd edition (eds Knobil, E. & Neill, J. D.) 79–122 (Raven Press, New York, New York, 1994).

    Google Scholar 

  5. Gardner, R. L. The early blastocyst is bilaterally symmetrical and its axis of symmetry is aligned with the animal–vegetal axis of the zygote in the mouse. Development 124, 289–301 (1997).

    CAS  PubMed  Google Scholar 

  6. Brunet, S. et al. Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase. J. Cell Biol. 146, 1–12 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schatten, H., Schatten, G., Mazia, D., Balczon, R. & Simerly, C. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs. Proc. Natl Acad. Sci. USA 83, 105–109 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 280–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Verlhac, M. H. et al. Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development 122, 815–822 (1996).

    CAS  PubMed  Google Scholar 

  10. Pittman, D. L. et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol Cell 1, 697–705. (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Edelmann, W. et al. Meiotic pachytene arrest in MLH1-deficient mice. Cell 85, 1125–1134 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Zeller, R. et al. Formin defines a large family of morphoregulatory genes and functions in establishment of the polarising region. Cell Tissue Res. 296, 85–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Emmons, S. et al. Cappuccino, a Drosophila maternal effect gene required for polarity of the egg and embryo, is related to the vertebrate limb deformity locus. Genes Dev. 9, 2482–2494 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Castrillon, D. H. & Wasserman, S. A. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 120, 3367–3377 (1994).

    CAS  PubMed  Google Scholar 

  15. Leader, B. & Leder, P. Formin-2, a novel formin homology protein of the cappuccino subfamily, is highly expressed in the developing and adult central nervous system. Mech. Dev. 93, 221–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Bedford, M. T., Chan, D. C. & Leder, P. FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands. EMBO J. 16, 2376–2383 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tominaga, T. et al. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol. Cell 5, 13–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biol. 1, 136–143 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Pruyne, D. et al. Role of formins in actin assembly: nucleation and barbed end association. Science 297, 612–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Maro, B. et al. Cytoskeleton organization during oogenesis, fertilization, and preimplantation development of the mouse. Int. J. Dev. Biol. 34, 127–137 (1990).

    CAS  PubMed  Google Scholar 

  21. Maro, B., Johnson, M. H., Webb, M. & Flach, G. Mechanism of polar body formation in the mouse oocyte: an interaction between the chromosomes, the cytoskeleton and the plasma membrane. J. Embryol. Exp. Morphol. 92, 11–32 (1986).

    CAS  PubMed  Google Scholar 

  22. Longo, F. J. & Chen, D. Y. Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev. Biol. 107, 382–394 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Kaufman, M. H. & Speirs, S. The postimplantation development of spontaneous digynic triploid embryos in LT/Sv strain mice. Development 101, 383–391 (1987).

    CAS  PubMed  Google Scholar 

  24. Eppig, J. J., Schultz, R. M., O'Brien, M. & Chesnel, F. Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev. Biol. 164, 1–9 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Schatten, G., Simerly, C. & Schatten, H. Microtubule configurations during fertilization, mitosis, and early development in the mouse and the requirement for egg microtubule- mediated motility during mammalian fertilization. Proc. Natl Acad. Sci. USA 82, 4152–4156 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zernicka-Goetz, M. Fertile offspring derived from mammalian eggs lacking either animal or vegetal poles. Development 125, 4803–4808 (1998).

    CAS  PubMed  Google Scholar 

  27. Weber, R. J., Pedersen, R. A., Wianny, F., Evans, M. J. & Zernicka-Goetz, M. Polarity of the mouse embryo is anticipated before implantation. Development 126, 5591–5598 (1999).

    CAS  PubMed  Google Scholar 

  28. Lee, L., Klee, S. K., Evangelista, M., Boone, C. & Pellman, D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol. 144, 947–961 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kato, T. et al. Localization of a mammalian homolog of diaphanous, mDia1, to the mitotic spindle in HeLa cells. J. Cell Sci. 114, 775–784 (2001).

    CAS  PubMed  Google Scholar 

  30. Heil-Chapdelaine, R. A., Adames, N. R. & Cooper, J. A. Formin' the connection between microtubules and the cell cortex. J. Cell Biol. 144, 809–811 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Evangelista, M., Pruyne, D., Amberg, D. C., Boone, C. & Bretscher, A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biol. 4, 32–41 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Sawin, K. E. Cell polarity: following formin function. Curr. Biol. 12, R6–R8 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Yarm, F., Sagot, I. & Pellman, D. The social life of actin and microtubules: interaction versus cooperation. Curr. Opin. Microbiol. 4, 696–702 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Jackson, S. M. & Berg, C. A. Soma-to-germline interactions during Drosophila oogenesis are influenced by dose-sensitive interactions between cut and the genes cappuccino, ovarian tumor and agnostic. Genetics 153, 289–303 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Magie, C. R., Meyer, M. R., Gorsuch, M. S. & Parkhurst, S. M. Mutations in the Rho1 small GTPase disrupt morphogenesis and segmentation during early Drosophila development. Development 126, 5353–5364 (1999).

    CAS  PubMed  Google Scholar 

  36. Afshar, K., Stuart, B. & Wasserman, S. A. Functional analysis of the Drosophila diaphanous FH protein in early embryonic development. Development 127, 1887–1897 (2000).

    CAS  PubMed  Google Scholar 

  37. Lynch, E. D. et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278, 1315–1318 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Hill, J. A. & Choi, B. C. Maternal immunological aspects of pregnancy success and failure. J. Reprod. Fertil. (Suppl.) 55, 91–97 (2000).

    CAS  Google Scholar 

  39. Weiss, R. S., Enoch, T. & Leder, P. Inactivation of mouse Hus1 results in genomic instability and impaired responses to genotoxic stress. Genes Dev. 14, 1886–1898 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A. & Leder, P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Hogan, B., Beddington, R., Constantini, F. & Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual 185–186 (Cold Spring Harbor Press, 1994).

    Google Scholar 

  42. Das, S. K. et al. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development 120, 1071–1083 (1994).

    CAS  PubMed  Google Scholar 

  43. de Vantery, C., Stutz, A., Vassalli, J. D. & Schorderet-Slatkine, S. Acquisition of meiotic competence in growing mouse oocytes is controlled at both translational and posttranslational levels. Dev. Biol. 187, 43–54 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Carabatsos, M. J., Combelles, C. M., Messinger, S. M. & Albertini, D. F. Sorting and reorganization of centrosomes during oocyte maturation in the mouse. Microsc. Res. Tech. 49, 435–444 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to C. O'Hara and M. Michelman for their assistance in creating and maintaining the targeted embryonic cell lines required for deletion of the Fmn2 gene. We thank D. Albertini for his advice and insight about oocyte development and critical review of this manuscript. We thank J. Eppig and M. Kaufman for advice regarding methods for blastocyst karyotyping. We are grateful to J. Seidman, C. Tabin, R. Weiss, N. Benvenisty, C. Racowsky, D. Schust, V. Makarov and H. Chen for their advice about this manuscript. B.L. was supported by a Howard Hughes Medical Institute (HHMI) predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Leder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures and table

Figure S1. RNA blot analysis of Fmn2 mRNA expression in Fmn2-targeted mice. (PDF 315 kb)

Figure S2. Immunoprecipitations of the Fmn2 protein in brain and ovary.

Figure S3. In vivo translation of Fmn2 expression constructs.

Table SI Litter size in Fmn2+/+, Fmn2+/-, and Fmn2-/- female mice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leader, B., Lim, H., Carabatsos, M. et al. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat Cell Biol 4, 921–928 (2002). https://doi.org/10.1038/ncb880

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb880

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing