Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway

Abstract

Sprouty (Spry) inhibits signalling by receptor tyrosine kinases; however, the molecular mechanism underlying this function has not been defined. Here we show that after stimulation by growth factors Spry1 and Spry2 translocate to the plasma membrane and become phosphorylated on a conserved tyrosine. Next, they bind to the adaptor protein Grb2 and inhibit the recruitment of the Grb2–Sos complex either to the fibroblast growth factor receptor (FGFR) docking adaptor protein FRS2 or to Shp2. Membrane translocation of Spry is necessary for its phosphorylation, which is essential for its inhibitor activity. A tyrosine-phosphorylated octapeptide derived from mouse Spry2 inhibits Grb2 from binding FRS2, Shp2 or mouse Spry2 in vitro and blocks activation of the extracellular-signal-regulated kinase (ERK) in cells stimulated by growth factor. A non-phosphorylated Spry mutant cannot bind Grb2 and acts as a dominant negative, inducing prolonged activation of ERK in response to FGF and promoting the FGF-induced outgrowth of neurites in PC12 cells. Our findings suggest that Spry functions in a negative feedback mechanism in which its inhibitor activity is controlled rapidly and reversibly by post-translational mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spry binds to Grb2 and colocalizes with Grb2.
Figure 2: Spry inhibits the recruitment of the Grb2–Sos complex to FRS2 or Shp2.
Figure 3: Tyrosine phosphorylation of Spry and its inhibitor activity.
Figure 4: Tyrosine-phosphorylated Spry binds to Grb2.
Figure 5: Phosphorylation of tyrosine is required for Spry inhibitor activity.
Figure 6: Activity of a tyrosine phosphorylated synthetic peptide.
Figure 7: Spry translocation to the plasma membrane is needed for its phosphorylation.
Figure 8: xSpry1Y53F and mSpry2Y55F are dominant-negative mutants.

Similar content being viewed by others

References

  1. Hunter, T. The croonian lecture, 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Phil. Trans. R. Soc. Lond. B. 353, 583–605 (1998).

    Article  CAS  Google Scholar 

  2. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  Google Scholar 

  3. Pawson, T. & Saxton, T. M. Signaling networks-do all roads lead to the same genes? Cell 97, 675–678 (1999).

    Article  CAS  Google Scholar 

  4. Simon, M. A. Receptor tyrosine kinases: specific outcomes from general signals. Cell 103, 13–15 (2000).

    Article  CAS  Google Scholar 

  5. Hunter, T. Signaling-2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  Google Scholar 

  6. Freeman, M. Feedback control of intercellular signalling in development. Nature 408, 313–319 (2000).

    Article  CAS  Google Scholar 

  7. Perrimon, N. & McMahon, A. P. Negative feedback mechanisms and their roles during pattern formation. Cell 97, 13–16 (1999).

    Article  CAS  Google Scholar 

  8. Golembo, M., Schweitzer, R., Freeman, M. & Shilo, B. Z. argos transcription is induced by the Drosophila EGF receptor pathway to form an inhibitory feedback loop. Development 122, 223–230 (1996).

    CAS  PubMed  Google Scholar 

  9. Ghiglione, C. et al. The transmembrane molecule kekkon 1 acts in a feedback loop to negative regulate the activity of the Drosophila EGF receptor during oogenesis. Cell 96, 847–856 (1999).

    Article  CAS  Google Scholar 

  10. Nakao, A. et al. Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 389, 631–635 (1997).

    Article  CAS  Google Scholar 

  11. Yasukawa, H., Sasaki, A. & Yoshimura, A. Negative regulation of cytokine signaling pathways. Annu. Rev. Immunol. 18, 143–164 (2000).

    Article  CAS  Google Scholar 

  12. Tsang, M., Friesel, R., Kudoh, T. & Dawid, I. B. Identification of Sef, a novel modulator of FGF signaling. Nat. Cell Biol. 4, 165–169 (2002).

    Article  CAS  Google Scholar 

  13. Furthauer, M., Lin, W., Ang, S.-L., Thisse, B. & Thisse, C. Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signaling. Nat. Cell Biol. 4, 170–174 (2002).

    Article  CAS  Google Scholar 

  14. Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. & Krasnow, M. A. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253–263 (1998).

    Article  CAS  Google Scholar 

  15. Casci, T., Vinos, J. & Freeman, M. Sprouty, an intracellular inhibitor of Ras signalling. Cell 96, 655–665 (1999).

    Article  CAS  Google Scholar 

  16. Kramer, S., Okabe, M., Hacohen, N., Krasnow, M. A. & Hiromi, Y. Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development 126, 2515–2525 (1999).

    CAS  PubMed  Google Scholar 

  17. Reich, A., Sapir, A. & Shilo, B. Z. Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 126, 4139–4147 (1999).

    CAS  PubMed  Google Scholar 

  18. Minowada, G., et al. Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126, 4465–4475 (1999).

    CAS  PubMed  Google Scholar 

  19. de Maximy, A. A. et al. Cloning and expression pattern of a mouse homologue of Drosophila sprouty in the mouse embryo. Mech. Dev. 81, 213–216 (1999).

    Article  CAS  Google Scholar 

  20. Chambers, D. & Mason, I. Expression of sprouty2 during early development of the chick embryo is coincident with known sites of FGF signalling. Mech. Dev. 91, 361–364 (2000).

    Article  CAS  Google Scholar 

  21. Mailleux, A. A. et al. Evidence that SPROUTY2 functions as an inhibitor of mouse embryonic lung growth and morphogenesis. Mech. Dev. 102, 81–94 (2001).

    Article  CAS  Google Scholar 

  22. Tefft, J. D. et al. Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. Curr. Biol. 9, 219–222 (1999).

    Article  CAS  Google Scholar 

  23. Nutt, S. L., Dingwell, K. S., Holt, C. E. & Amaya, E. Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. Genes Dev. 15, 1152–1166 (2001).

    Article  CAS  Google Scholar 

  24. Lee, S. H., Schloss, D. J., Jarvis, L., Krasnow, M. A. & Swain, J. L. Inhibition of angiogenesis by a mouse sprouty protein. J. Biol. Chem. 276, 4128–4133 (2001).

    Article  CAS  Google Scholar 

  25. Impagnatiello, M. A. et al. Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J. Cell Biol. 152, 1087–1098 (2001).

    Article  CAS  Google Scholar 

  26. Gross, I., Bassit, B., Benezra, M. & Licht, J. D. Mammalian Sprouty proteins inhibit cell growth and differentiation by preventing Ras activation. J. Biol. Chem. 276, 46460–46468 (2001).

    Article  CAS  Google Scholar 

  27. Furthauer, M., Reifers, F., Brand, M., Thisse, B. & Thisse, C. Sprouty4 acts in vivo as a feedback-induced antagonist of FGF signaling in zebrafish. Development 128, 2175–2186 (2001).

    CAS  PubMed  Google Scholar 

  28. Yusoff, P. et al. Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J. Biol. Chem. 277, 3195–3201 (2002).

    Article  CAS  Google Scholar 

  29. Sasaki, A., Taketomi, T., Wakioka, T., Kato, R. & Yoshimura, A. Identification of a dominant negative mutant of Sprouty that potentiates fibroblast growth factor- but not epidermal growth factor-induced ERK activation. J. Biol. Chem. 276, 36804–36808 (2001).

    Article  CAS  Google Scholar 

  30. Pawson, T. & Gish, G. D. SH2 and SH3 domains: from structure to function. Cell 71, 359–362 (1992).

    Article  CAS  Google Scholar 

  31. Kouhara, H. et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89, 693–702 (1997).

    Article  CAS  Google Scholar 

  32. Scott, S. G., Stern, M. J. & Horvitz, H. R. C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356, 340–344 (1992).

    Article  Google Scholar 

  33. Kusakabe, M., Masuyama, N., Hanafusa, H. & Nishida, E. Xenopus FRS2 is involved in early embryogenesis in cooperation with the Src family kinase Laloo. EMBO Reports 2, 727–735 (2001).

    Article  CAS  Google Scholar 

  34. Lim, J. et al. Sprouty proteins are targeted to membrane ruffles upon growth factor receptor tyrosine kinase activation. J. Biol. Chem. 275, 32837–32845 (2000).

    Article  CAS  Google Scholar 

  35. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  Google Scholar 

  36. Hadari, Y. R., Kouhara, H., Lax, I. & Schlessinger, J. Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation. Mol. Cell. Biol. 18, 3966–3973 (1998).

    Article  CAS  Google Scholar 

  37. Wong, E. S. M., Lim, J., Low, B. C., Chen, Q. & Guy, G. R. Evidence for direct interaction between Sprouty and Cbl. J. Biol. Chem. 276, 5866–5875 (2001).

    Article  CAS  Google Scholar 

  38. Smart, E. J. et al. Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell Biol. 19, 7289–7304 (1999).

    Article  CAS  Google Scholar 

  39. Wong, A., Lamothe, B., Lee, A., Schlessinger, J. & Lax, I. FRS2α attenuates FGF receptor signalling by Grb2-mediated recruitment of the ubiquitin ligase Cbl. Proc. Natl. Acad. Sci. USA 99, 6684–6689 (2002).

    Article  CAS  Google Scholar 

  40. Joazeiro, C. A. P. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999).

    Article  CAS  Google Scholar 

  41. Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994).

    Article  CAS  Google Scholar 

  42. Hanafusa, H., Masuyama, N., Kusakabe, M., Shibuya, H. & Nishida, E. The TGF-β family member derriere is involved in regulation of the establishment of left–right asymmetry. EMBO Rep. 1, 32–39 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kasuga for the mouse Grb2 cDNA; S. Kamakura for the mouse Spry2 cDNA; and M. Kusakabe and S. Nishimoto for technical assistance and discussion. This work was supported by grants from the Ministry of Education, Science and Culture of Japan (to E.N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisuke Nishida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanafusa, H., Torii, S., Yasunaga, T. et al. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 4, 850–858 (2002). https://doi.org/10.1038/ncb867

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb867

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing