Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Reaper-mediated inhibition of DIAP1-induced DTRAF1 degradation results in activation of JNK in Drosophila

Abstract

Although Jun amino-terminal kinase (JNK) is known to mediate a physiological stress signal that leads to cell death, the exact role of the JNK pathway in the mechanisms underlying intrinsic cell death is largely unknown. Here we show through a genetic screen that a mutant of Drosophila melanogaster tumour-necrosis factor receptor-associated factor 1 (DTRAF1) is a dominant suppressor of Reaper-induced cell death. We show that Reaper modulates the JNK pathway through Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), which negatively regulates DTRAF1 by proteasome-mediated degradation. Reduction of JNK signals rescues the Reaper-induced small eye phenotype, and overexpression of DTRAF1 activates the Drosophila ASK1 (apoptosis signal-regulating kinase 1; a mitogen-activated protein kinase kinase kinase) and JNK pathway, thereby inducing cell death. Overexpresson of DIAP1 facilitates degradation of DTRAF1 in a ubiquitin-dependent manner and simultaneously inhibits activation of JNK. Expression of Reaper leads to a loss of DIAP1 inhibition of DTRAF1-mediated JNK activation in Drosophila cells. Taken together, our results indicate that DIAP1 may modulate cell death by regulating JNK activation through a ubiquitin–proteasome pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rpr-induced eye phenotype is mediated by the JNK pathway.
Figure 2: DTRAF1 activates DJNK and DTRAF1-induced cell death is suppressed by DIAP1.
Figure 3: DIAP1 induces DTRAF1 degradation and Rpr-induced DIAP1 degradation results in JNK activation.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Data deposits

  • The DASK1 sequence has been deposited in GenBank under accession number AB038236.

References

  1. White, K., Grether, M. E., Abrams, J. M., Young, L., Farrell, K. & Steller, H. Science 264, 677–683 (1994).

    Article  CAS  Google Scholar 

  2. Grether, M. E., Abrams, J. M., Agapite, J., White, K. & Steller, H. Genes Dev. 9, 1694–1708 (1995).

    Article  CAS  Google Scholar 

  3. Chen, P., Nordstrom, W., Gish, B. & Abrams, J. M. Genes Dev. 10, 1773–1782 (1996).

    Article  CAS  Google Scholar 

  4. Hay, B. A., Wassarman, D. A. & Rubin, G. M. Cell 83, 1253–1262 (1995).

    Article  CAS  Google Scholar 

  5. White, K., Tahaoglu, E. & Steller, H. Science 271, 805–807 (1996).

    Article  CAS  Google Scholar 

  6. Pronk, G. J., Ramer, K., Amiri, P. & Williams, L. T. Science 271, 808–810 (1996).

    Article  CAS  Google Scholar 

  7. Vucic, D., Kaiser, W. J., Harvey, A. J. & Miller, L. K. Proc. Natl Acad. Sci. USA 94, 10183–10188 (1997).

    Article  CAS  Google Scholar 

  8. Vucic, D., Kaiser, W. J. & Miller, L. K. J. Biol. Chem. 273, 33915–33921 (1998).

    Article  CAS  Google Scholar 

  9. Wang, S. L., Hawkins, C. J., Yoo, S. J., Muller, H. A. & Hay, B. A. Cell 98, 453–463 (1999).

    CAS  PubMed  Google Scholar 

  10. Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. EMBO J. 19, 589–597 (2000).

    Article  CAS  Google Scholar 

  11. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Cell 102, 33–42 (2000).

    Article  CAS  Google Scholar 

  12. Verhagen, A. M. et al. Cell 102, 43–53 (2000).

    Article  CAS  Google Scholar 

  13. Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K. & Takahashi R. Mol. Cell 8, 613–621 (2001).

    Article  CAS  Google Scholar 

  14. Wassarman, D. A., Solomon, N. M. & Rubin, G. M. Gene 169, 283–284 (1996).

    Article  CAS  Google Scholar 

  15. Liu, H., Su, Y. C., Becker, E., Treisman, J. & Skolnik, E. Y. Curr. Biol. 9, 101–104 (1999).

    Article  CAS  Google Scholar 

  16. Bradley, J. R. & Pober, J. S. Oncogene 20, 6482–6491 (2001).

    Article  CAS  Google Scholar 

  17. Ichijo, H. et al. Science 275, 90–94 (1997).

    Article  CAS  Google Scholar 

  18. Wing, J. P., Schwartz, L. M. & Nambu J. R. Mech. Dev. 102, 193–203 (2001).

    Article  CAS  Google Scholar 

  19. Yoo, S. J. et al. Nature Cell Biol. 4, 416–424 (2002).

    Article  CAS  Google Scholar 

  20. Hays, R., Wickline, L. & Cagan, R. Nature Cell Biol. 4, 425–431 (2002).

    Article  CAS  Google Scholar 

  21. Ryoo, H. D., Bergmann, A., Gonen, H., Ciechanover, A. & Steller, H. Nature Cell Biol. 4, 432–438 (2002).

    Article  CAS  Google Scholar 

  22. Holly, C. L., Olson, M. R., Colon-Ramos, D. A. & Kornbluth, S. Nature Cell Biol. 4, 439–444 (2002).

    Article  Google Scholar 

  23. Wing, J. P. et al. Nature Cell Biol. 4, 451–456 (2002).

    Article  CAS  Google Scholar 

  24. Kanuka, H. et al. Mol. Cell 4, 757–769 (1999).

    Article  CAS  Google Scholar 

  25. Kanuka, H. et al. Proc. Natl Acad. Sci. USA 96, 145–150 (1999).

    Article  CAS  Google Scholar 

  26. Sawamoto, K. et al. J. Cell Biol. 146, 361–372 (1999).

    Article  CAS  Google Scholar 

  27. Nishitoh, H. et al. Mol. Cell 2, 389–395 (1998).

    Article  CAS  Google Scholar 

  28. Geleziunas, R., Xu, W., Takeda, K., Ichijo, H. & Greene, W. C. Nature 410, 834–838 (2001).

    Article  CAS  Google Scholar 

  29. Igaki, T. et al. Proc. Natl Acad. Sci. USA 97, 662–667 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Hiratou and R. Akai for technical support; H. Steller, G. M. Rubin, B. Hay, M. Nakamura, T. Adachi-Yamada and J. Nambu for fly stocks; the Berkeley Drosophila Genome Project for reagents and information; the Bloomington Stock Center for fly stocks; Y. Uchiyama for encouragement; and B. Nelson for critical reading. This work was supported in part by grants from the Japanese Ministry of Education, Science, Sports, Culture and Technology (K.S., H.O. and M. M.) and by the Core Research for Evolutional Science and Technology (H.O.), the Japan Science and Technology Corporation, and the RIKEN Bioarchitect Research Project. T.I. is a research fellow of the Japan Society for the Promotion of Science. H.K. is a research fellow of the Special Postdoctoral Researchers Program, RIKEN. E.K. is a research fellow of the Junior Research Associate Program, RIKEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Miura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures and table

Figure S1 (PDF 1104 kb)

Figure S2

Supplementary table 1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuranaga, E., Kanuka, H., Igaki, T. et al. Reaper-mediated inhibition of DIAP1-induced DTRAF1 degradation results in activation of JNK in Drosophila. Nat Cell Biol 4, 705–710 (2002). https://doi.org/10.1038/ncb842

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing