Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zizimin1, a novel Cdc42 activator, reveals a new GEF domain for Rho proteins

Abstract

The Rho family GTPases Rac, Rho and Cdc42 are critical in regulating the actin-based cytoskeleton, cell migration, growth, survival and gene expression. These GTPases are activated by guanine nucleotide-exchange factors (GEFs). A biochemical search for Cdc42 activators led to the cloning of zizimin1, a new protein whose overexpression induces Cdc42 activation. Sequence comparison combined with mutational analysis identified a new domain, which we named CZH2, that mediates direct interaction with Cdc42. CZH2-containing proteins constitute a new superfamily that includes the so-called 'CDM' proteins that bind to and activate Rac. Together, the results suggest that CZH2 is a new GEF domain for the Rho family of proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific binding of zizimin1 to nucleotide-depleted Cdc42.
Figure 2: Expression and function of zizimin1.
Figure 3: Filopodia induction by zizimin1.
Figure 4: Sequence of zizimin1.
Figure 5: Structure of zizimin1 and its homologues.
Figure 6: The zizimin1 CZH2 domain is necessary and sufficient for Cdc42 binding.
Figure 7: Binding and activation of Cdc42 by the C2H2 domain.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bishop, A. L. & Hall, A. Rho GTPases and their effector proteins. Biochem. J. 348, 241–255 (2000).

    Article  CAS  Google Scholar 

  2. Aspenstrom, P. Effectors for the Rho GTPases. Curr. Opin. Cell Biol. 11, 95–102 (1999).

    Article  CAS  Google Scholar 

  3. Cherfils, J. & Chardin, P. GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem. Sci. 24, 306–311 (1999).

    Article  CAS  Google Scholar 

  4. Cerione, R. A. & Zheng, Y. The Dbl family of oncogenes. Curr. Opin. Cell Biol. 8, 216–222 (1996).

    Article  CAS  Google Scholar 

  5. Hart, M. J. et al. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J. Biol. Chem. 269, 62–65 (1994).

    CAS  PubMed  Google Scholar 

  6. Wu, Y. C. & Horvitz, H. R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501–504 (1998).

    Article  CAS  Google Scholar 

  7. Kiyokawa, E. et al. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 12, 3331–3336 (1998).

    Article  CAS  Google Scholar 

  8. Nishihara, H. et al. Non-adherent cell-specific expression of DOCK2, a member of the human CDM-family proteins. Biochim. Biophys. Acta 1452, 179–187 (1999).

    Article  CAS  Google Scholar 

  9. Kiyokawa, E., Hashimoto, Y., Kurata, T., Sugimura, H. & Matsuda, M. Evidence that DOCK180 upregulates signals from the CrkII-p130(Cas) complex. J. Biol. Chem. 273, 24479–24484 (1998).

    Article  CAS  Google Scholar 

  10. Fukui, Y. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412, 826–831 (2001).

    Article  CAS  Google Scholar 

  11. Reddien, P. W. & Horvitz, H. R. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biol. 2, 131–136 (2000).

    Article  CAS  Google Scholar 

  12. Nolan, K. M. et al. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev. 12, 3337–3342 (1998).

    Article  CAS  Google Scholar 

  13. Hart, M. J. et al. Identification of a novel guanine nucleotide exchange factor for the Rho GTPase. J. Biol. Chem. 271, 25452–25458 (1996).

    Article  CAS  Google Scholar 

  14. Del Pozo, M. A., Price, L. S., Alderson, N. B., Ren, X. D. & Schwartz, M. A. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J. 19, 2008–2014 (2000).

    Article  CAS  Google Scholar 

  15. Tran Van Nhieu, G., Caron, E., Hall, A. & Sansonetti, P. J. IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18, 3249–3262 (1999).

    Article  CAS  Google Scholar 

  16. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 28, 263–266 (2000).

    Article  CAS  Google Scholar 

  17. Berger, B. et al. Predicting coiled coils by use of pairwise residue correlations. Proc. Natl Acad. Sci. USA 92, 8259–8263 (1995).

    Article  CAS  Google Scholar 

  18. Lupas, A. Prediction and analysis of coiled-coil structures. Methods Enzymol. 266, 513–525 (1996).

    Article  CAS  Google Scholar 

  19. Olofsson, B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal. 11, 545–554 (1999).

    Article  CAS  Google Scholar 

  20. Keep, N. H. et al. A modulator of the Rho family G proteins, RhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Structure 5, 623–633 (1997).

    Article  CAS  Google Scholar 

  21. Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. & Galan, J. E. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998).

    Article  CAS  Google Scholar 

  22. Rudolph, M. G. et al. Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for RhoGTPases. J. Biol. Chem. 274, 30501–30509 (1999).

    Article  CAS  Google Scholar 

  23. Gumienny, T. L. et al. Ced-12/elmo, a novel member of the crkII/dock180/rac pathway, is required for phagocytosis and cell migration. Cell 107, 27–41 (2001).

    Article  CAS  Google Scholar 

  24. Valster, A. H., Hepler, P. K. & Chernoff, J. Plant GTPases: the Rhos in bloom. Trends Cell. Biol. 10, 141–146 (2000).

    Article  CAS  Google Scholar 

  25. Khosravi-Far, R. et al. Dbl and Vav mediate transformation via mitogen-activated protein kinase pathways that are distinct from those activated by oncogenic Ras. Mol. Cell. Biol. 14, 6848–6857 (1994).

    Article  CAS  Google Scholar 

  26. Kiosses, W. B., Daniels, R. H., Otey, C., Bokoch, G. M. & Schwartz, M. A. A role for p21-activated kinase in endothelial cell migration. J. Cell Biol. 147, 831–844 (1999).

    Article  CAS  Google Scholar 

  27. Kikuno, R. et al. Prediction of the coding sequences of unidentified human genes. XIV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 6, 197–205 (1999).

    Article  CAS  Google Scholar 

  28. Del Pozo, M. A., Vicente-Manzanares, M., Tejedor, R., Serrador, J. M. & Sanchez-Madrid, F. Rho GTPases control migration and polarization of adhesion molecules and cytoskeletal ERM components in T lymphocytes. Eur. J. Immunol. 29, 3609–3620 (1999).

    Article  CAS  Google Scholar 

  29. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Nagase from the Kazusa DNA Research Institute for providing the KIAA1058 cDNA. We thank C. Der for providing Dbl expressing NIH-3T3 cells and R. Cerione for the D118A Cdc42. We are grateful to J. Han for advice about GEF assays and to N. Alderson for excellent technical assistance. This work was supported by grants from the U.S. Public Health Service (RO1 GM41721) to M.A.S., grants from the American Heart Association to N.M. and W.B.K. and from the Leukemia & Lymphoma society to M.A.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Schwartz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figure

Figure S1. Gel analysis of immunoprecipitates. (PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meller, N., Irani-Tehrani, M., Kiosses, W. et al. Zizimin1, a novel Cdc42 activator, reveals a new GEF domain for Rho proteins. Nat Cell Biol 4, 639–647 (2002). https://doi.org/10.1038/ncb835

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb835

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing