Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane

Abstract

To perform vectorial secretory and transport functions that are critical for the survival of the organism, epithelial cells sort plasma membrane proteins into polarized apical and basolateral domains1,2. Sorting occurs post-synthetically, in the trans Golgi network (TGN) or after internalization from the cell surface in recycling endosomes, and is mediated by apical and basolateral sorting signals embedded in the protein structure3,4. Basolateral sorting signals include tyrosine motifs in the cytoplasmic domain that are structurally similar to signals involved in receptor internalization by clathrin-coated pits5,6. Recently, an epithelial-specific adaptor protein complex, AP1B, was identified7,8. AP-1B recognizes a subset of basolateral tyrosine motifs through its μ1B subunit7,8. Here, we characterized the post-synthetic and post-endocytic sorting of the fast recycling low density lipoprotein receptor (LDLR) and transferrin receptor (TfR) in LLC-PK1 cells, which lack μ1B and mis-sort both receptors to the apical surface8. Targeting and recycling assays in LLC-PK1 cells, before and after transfection with μ1B, and in MDCK cells, which express μ1B constitutively, suggest that AP1B sorts basolateral proteins post-endocytically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: μ1B colocalizes well with internalized Tf–Alexa 488 and γ-adaptin, and poorly with TGN marker TGN38.
Figure 2: LDL receptor is targeted basolaterally after synthesis in MDCK, LLC-PK1 and LLC-PK1-μ1B cells.
Figure 3: Endocytic-deficient LDLR-A18 is targeted to basolateral membranes in LLC-PK1 cells.
Figure 4: Expression of μ1B promotes basolateral targeting of Tf in LLC-PK1 cells.

Similar content being viewed by others

References

  1. Rodriguez-Boulan, E. & Powell, S. K. Annu. Rev. Cell Biol. 8, 395–427 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Yeaman, C., Burdick D, Muesch A & Rodriguez-Boulan, E. Cell Biology: A Laboratory Handbook 237–245 (Academic Press, 1998).

    Google Scholar 

  3. Keller, P. & Simons, K. J. Cell Sci. 110, 3001–3009 (1997).

    CAS  PubMed  Google Scholar 

  4. Mostov, K., Verges, M. & Altschuler, Y. Curr. Opin. Cell Biol. 12, 483–490 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Le Gall, A., Yeaman, C., Muesch, A. & Rodriguez-Boulan, E. Semin. Nephrol. 15, 272–284 (1995).

    CAS  PubMed  Google Scholar 

  6. Matter, K. & Mellman, I. Curr. Opin. Cell Biol. 6, 545–554 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Ohno, H. et al. FEBS Lett. 449, 215–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Fölsch, H., Ohno, H., Bonifacino, J. & Mellman, I. Cell 99, 189–198 (1999).

    Article  PubMed  Google Scholar 

  9. Robinson, M. & Bonifacino, J. Curr. Opin. Cell Biol. 13, 444–453 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Owen, D. & Evans, P. Science 282, 1327–1332 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonifacino, J. & Dell'Angelica, E. J. Cell Biol. 145, 923–926 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simmen, T., Honing, S., Icking, A., Tikkanen, R. & Hunziker, W. Nature Cell Biol. 4, 154–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Nishimura, N., Plutner, H. & Balch, W. Proc. Natl Acad. Sci. USA 99, 6755–6760 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fölsch, H., Pypaert, M., Schu, P. & Mellman, I. J. Cell Biol. 152, 505–606 (2001).

    Article  Google Scholar 

  15. Girotti, M & Banting, G. J.Cell Sci. 109, 2915–2926 (1996).

    CAS  PubMed  Google Scholar 

  16. Roush, D., Gottardi, C., Naim, H., Roth, M. & Caplan, M. J. Biol. Chem. 273, 26862–26869 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Maxfield, F. R. & Yamashiro, D. J. Intracellular trafficking of proteins. (eds Steer, C. J. and Hanover, J. A.) 157–182 (Cambridge University press, Cambridge, 1991).

    Google Scholar 

  18. Gottardi, C., Dunbar, L. & Caplan, M. Am. J. Physiol. 268, F285–F295 (1995).

    CAS  PubMed  Google Scholar 

  19. Hunziker, W., Harter, C., Matter, K. & Mellman, I. Cell 66, 907–920 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Matter, K., Hunziker, W. & Mellman, I. Cell 71, 741–753 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Matter, K., Yamamoto, E. M. & Mellman, I. J. Cell Biol. 126, 991–1004 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Koivisto, U.-M., Hubbard, A. & Mellman, I. Cell 105, 575–585 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Maxfield, F. R., Schlessinger, J., Shechter, Y., Pastan, I. & Willingham, M. C. Cell 14, 805–810 (1978).

    Article  CAS  PubMed  Google Scholar 

  24. Odorizzi, G. & Trowbridge, I. J. Cell Biol. 137, 1255–1264 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Futter, C. E. et al. J. Cell Biol. 141, 611–623 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, X.,, Kumar, R., Navarre, J., Casanova, J. E. & Goldenring, J. R. J. Biol. Chem. 275, 29138–29146 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Brown, P. et al. Traffic 1, 141–151 (2000).

    Article  Google Scholar 

  28. Aroeti, B. & Mostov, K. EMBO J. 13, 2297–2304 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matter, K., Whitney, J., Yamamoto, E. & Mellman, I. Cell 74, 1053–1064 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. McGraw, T. & Subtil, A. Endocytosis: biochemical analyses (John Wiley & Sons, New York, NY, 1999).

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants GM34107 and EY08538 and by a Jules and Doris Stein Professorship from the Research to Prevent Blindness Foundation to E.R.B., and by NIH grants DK-52852 and DK-57689 to T.E.M. We thank I. Mellman, H. Fölsch and J. Bonifacino for providing several constructs and antibodies. We thank I. Mellman and members of the Rodriguez-Boulan laboratory for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Rodriguez-Boulan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Figure S1. Double immunofluorescence localization of µ1B and endosomal markers rab-5 and rab 11. (PDF 499 kb)

Figure S2. LLC-PK1 monolayers on filters are impermeant to antibodies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, Y., McGraw, T. & Rodriguez-Boulan, E. The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nat Cell Biol 4, 605–609 (2002). https://doi.org/10.1038/ncb827

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb827

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing