Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

EphrinA1-induced cytoskeletal re-organization requires FAK and p130cas

Abstract

Ephrins and Eph receptors are involved in axon guidance and cellular morphogenesis. An interaction between ephrin and Eph receptors elicits neuronal growth-cone collapse through cytoskeletal disassembly. When NIH3T3 cells were plated onto an ephrinA1-coated surface, the cells both adhered and spread. Adhesion and spreading proceeded concomitantly with changes in both the actin and microtubule cytoskeleton. EphA2, focal adhesion kinase (FAK) and p130cas were identified as the major ephrin-dependent phosphotyrosyl proteins during the ephrin-induced morphological changes. Mouse embryonic fibroblasts (MEFs) derived from FAK−/− and p130cas−/− mice had severe defects in ephrinA1-induced cell spreading, which were reversed after re-expression of FAK or p130cas, respectively. Expression of a constitutively active EphA2 induced NIH3T3 cells to undergo identical, but ligand-independent, morphological changes. These data show that ephrinA1 can induce cell adhesion and actin cytoskeletal changes in fibroblasts in a FAK- and p130cas-dependent manner, through activation of the EphA2 receptor. The finding that ephrin–Eph signalling can result in actin cytoskeletal assembly, rather than disassembly, has many implications for ephrin–Eph responses in other cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EphrinA1 induces cell adhesion and spreading.
Figure 2: Localization of F-actin, tubulin and phosphotyrosine in NIH3T3 cells plated onto ephrinA1 or fibronectin.
Figure 3: Localization of F-actin, Paxillin and Vinculin in NIH3T3 cells plated onto ephrinA1 or fibronectin.
Figure 4: EphrinA1 induces increased tyrosine phosphorylation of FAK, p130cas, Paxillin and EphA2.
Figure 5: Immunolocalization of FAK and p130cas after plating NIH3T3 cells onto ephrinA1.
Figure 6: FAK−/− MEFs exhibit severe deficiencies in spreading on ephrinA1-coated surfaces.
Figure 7: p130cas−/− MEFs exhibit no spreading on ephrinA1-coated surfaces.
Figure 8: A constitutively active EphA2 mimics the actin re-organization induced by ephrinA1.
Figure 9: RhoA is required for ephrinA1-dependent spreading of NIH3T3 cells.

Similar content being viewed by others

References

  1. Pasquale, E. B. The Eph family of receptors. Curr. Opin. Cell Biol. 9, 608–615 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Flanagan, J. G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Holland, S. J. et al. Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383, 722–725 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Bruckner, K., Pasquale, E. B. & Klein, R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275, 1640–1643 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Monschau, B. et al. Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. EMBO J. 16, 1258–1267 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pasquale, E. B. & Klein, R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275, 1640–1643 (1997).

    Article  PubMed  Google Scholar 

  7. Wilkinson, D. G. Multiple roles of EPH receptors and ephrins in neural development. Nature Rev. Neurosci. 2, 155–164 (2001).

    Article  CAS  Google Scholar 

  8. Gerlai, R. Eph receptors and neural plasticity. Nature Rev. Neurosci. 2, 205–209 (2001).

    Article  CAS  Google Scholar 

  9. Klein, R. Excitory Eph receptors and adhesive ephrin ligands. Curr. Opin. Cell Biol. 13, 196–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Davy, A. et al. Compartmentalised signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev. 13, 3125–3135 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davy, A. & Robbins, S. M. Ephrin-A5 modulates cell adhesion and morphology in an integrin dependent manner. EMBO J. 19, 5396–5405 (2001).

    Article  Google Scholar 

  12. Lu, Q., Sun, E. E., Klein, R. S. & Flanagan, J. G. Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105, 69–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Gao, P. P., Sun, C. H., Zhou, X. F., DiCicco-Bloom, E. & Zhou, R. Ephrins stimulate or inhibit neurite outgrowth and survival as a function of neuronal cell type. J. Neurosci. Res. 60, 427–436 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Holmberg, J., Clarke, D.L. & Frisen, J. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408, 203–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Schlaepfer, D. D., Hauck, C. R. & Sieg, D. J. Signalling through focal adhesion kinase. Prog. Biophys. Mol. Biol. 71, 435–478 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Parsons, J. T., Martin, K. H., Slack, J. K., Taylor, J. M. & Weed. S. A. Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 19, 5606–5613 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Hauck, C. R., Klingbeil, C. K. & Schlaepfer, D. D. Focal adhesion kinase functions as a receptor-proximal signaling component required for directed cell migration. Immunol. Res. 21, 293–303 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Polte, T. R. & Hanks, S. K. Interaction between focal adhesion kinase and crk-associated tyrosine kinase substrate p130cas. Proc. Natl Acad. Sci. USA 92, 10678–10682 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harte, M. T., Macklem, M., Weidow, C. L., Parsons, J. T. & Bouton, A. H. Identification of two focal adhesion targeting sequences in the adapter molecule p130(Cas). Biochim. Biophys. Acta 1499, 34–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Sieg, D. J., Hauck, C. R. & Schlaepfer, D. D. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J. Cell Sci. 112, 2677–2691 (1999).

    CAS  PubMed  Google Scholar 

  21. Huynh-Do, U. et al. Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through α5β3 and α5β1 integrins. EMBO J. 18, 2165–2173 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miao, H., Burnett, E., Kinch, M., Simon, E. & Wang, B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nature Cell Biol. 2, 62–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Gu, C. & Park, S. The EphA8 receptor regulates integrin activity through p110γ phosphatidylinositol-3 kinase in a tyrosine kinase activity-independent manner. Mol. Cell. Biol. 14, 4579–4597 (2001).

    Article  Google Scholar 

  24. Becker, E. et al. Nck-interacting Ste20 kinase couples Eph receptors to c-Jun N-terminal kinase and integrin activation. Mol. Cell. Biol. 5, 1537–1545 (2000).

    Article  Google Scholar 

  25. Huai, J. & Drescher, U. An ephrin-A-dependent signaling pathway controls integrin function and is linked to the tyrosine phosphorylation of a 120-kDa protein. J. Biol. Chem. 276, 6689–6694 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Z., Vuori, K., Wang, H., Reed, J. C. & Ruoslahti, E. Integrin activation by R-ras. Cell 85, 61–69 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Berrier, A. L., Mastrangelo, A. M., Downward, J., Ginsberg, M. & LaFlamme, S. E. Activated R-ras, Rac1, PI 3-kinase and PKCγ can each restore cell spreading inhibited by isolated integrin β1 cytoplasmic domains. J. Cell Biol. 151, 1549–1560 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zou, J. X. et al. An Eph receptor regulates integrin activity through R-Ras. Proc. Natl Acad. Sci. USA 96, 13813–13818 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dodelet, V. C., Pazzagli, C., Zisch, A. H, Hauser, C. A. & Pasquale, E. B. A novel signaling intermediate, SHEP1, directly couples Eph receptors to R-Ras and Rap1A. J. Biol. Chem. 274, 31941–31946 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Miao, H. et al. Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nature Cell Biol. 3, 527–530 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Schlaepfer, D. D., Hanks, S. K., Hunter, T. & van der Geer, P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372, 786–791 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Schlaepfer, D. D. & Hunter, T. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol. Cell. Biol. 16, 5623–5633 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cary, L. A., Han, D. C., Polte, T. R., Hanks, S. K. & Guan, J. L. Identification of p130cas as a mediator of focal adhesion kinase-promoted cell migration. J. Cell Biol. 140, 211–221 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klingbeil, C. K. et al. Targetting Pyk2 to β1-integrin-containing focal contacts rescues fibronectin-stimulated signaling and haptotactic motility defects of focal adhesion kinase-null cells. J. Cell Biol. 152, 97–110 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruest, P. J., Roy, S., Shi, E., Mernaugh, R. L. & Hanks, S. K. Phosphospecific antibodies reveal focal adhesion kinase activation loop phosphorylation in nascent and mature focal adhesions and requirement for the autophosphorylation site. Cell Growth Differ. 11, 41–48 (2000).

    CAS  PubMed  Google Scholar 

  36. Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Honda, H. et al. Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130cas. Nature Genet. 19, 361–365 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Honda, H., Nakamoto, T., Sakai, R. & Hirai, H. p130cas, an assembling molecule of actin filaments, promotes cell movement, cell migration, and cell spreading in fibroblasts. Biochem. Biophys. Res. Commun. 262, 25–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Gonzatti-Haces, M. et al. Characterisation of the TPR-MET oncogene p65 and the MET protooncogene p140 protein-tyrosine kinases. Proc. Natl Acad. Sci. USA 85, 21–25 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rodrigues, G. A. & Park, M. Dimerisation mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol. Cell. Biol. 13, 6711–6722 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, A. Y. Differential expression of cell surface molecules in prostate cancer cells. Cancer Res. 60, 3429–3434 (2000).

    CAS  PubMed  Google Scholar 

  42. Torring, N., Jorgensen, P. E., Sorensen, B. S. & Nexo, E. Increased expression of heparin binding EGF (HB-EGF), amphiregulin, TGFα and epiregulin in androgen-independent prostate cancer cell lines. Anticancer Res. 20, 91–95 (2000).

    CAS  PubMed  Google Scholar 

  43. Stanzione, R. et al. Variations of proline-rich kinase Pyk2 expression correlate with prostate cancer progression. Lab. Invest. 81, 51–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Walker-Daniels, J. et al. Overexpression of the EphA2 Tyrosine Kinase in Prostate Cancer. Prostate 41, 275–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Wahl, S., Barth, H., Ciossek, T., Aktories, K. & Mueller, B. K. Ephrin-A5 Induces Collapse of Growth Cones by Activating Rho and Rho Kinase. J. Cell Biol. 149, 263–270 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, F-Q. & Cohan, C. S. Growth Cone Collapse through Coincident loss of Actin Bundles and Leading Edge Actin without Actin Depolymerisation. J. Cell Biol. 153, 1071–1083 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Holland, S. J. et al. Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J. 16, 3877–3888 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zisch, A. H., Kalo, M. S., Chong, L. D. & Pasquale, E. B. Complex formation between EphB2 and Src requires phosphorylation of tyrosine 611 in the EphB2 juxtamembrane region. Oncogene 16, 2657–2670 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Yu, H. H., Zisch, A. H., Dodelet, V. C. & Pasquale, E. B. Multiple signaling interactions of Abl and Arg kinases with the EphB2 receptor. Oncogene 20, 3995–4006 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Elowe, S. Holland, S. J., Kulkarni, S. & Pawson, T. Downregulation of the ras-mitogen-activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for ephrin-induced neurite retraction. Mol. Cell. Biol. 21, 7429–7441 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schmucker, D. & Zipursky, S. L. Signalling downstream of Eph receptors and ephrin ligands. Cell 105, 701–704 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Shamah, S. M. et al. Epha receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Lindberg, R. A. & Hunter, T. cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol. Cell. Biol. 10, 6316–6324 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang, W. et al. PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol. Cell 2, 877–885 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for parts of this work was provided by a Human Frontiers Science Program Organisation long-term fellowship and an Amgen Inc. fellowship (to N.C.) as well as National Institutes of Health grants from the National Cancer Institute, CA141915, CA39780 and CA82863 (to T.H.). We are indebted to J. Meisenhelder, S. Simon, H. Mondala and M. Rosenthal for considerable help and expert technical assistance. We also thank C. Vaziri for numerous helpful discussions and R. Lindberg, J. Ruiz, L. Robertson, D. Schlaepfer, N. Somia, W. Jiang and B. Seed for generously donating their time, reagents and expertise. We are especially grateful to R.Gage, B. Summers and L. Kitabayashi for access to and help with confocal microscopy, and J. Simon for invaluable help with Adobe Photoshop. T.H. is a Frank and Elise Schilling American Cancer Society Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel Carter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Figure S1. Plating NIH3T3 cells on to ephrinA1 induces cell adhesion and spreading in a large percentage of cells and this is mimicked by expression of an activated EphA2 receptor. (PDF 228 kb)

Figure S2. Profiling ephrinA1-responsive EphA receptors in NIH3T3 cells. Serum starved NIH3T3 cells were treated with 2µg/ml ephrinA1-Fc or buffer control for 30 minutes.

Figure S3. Adherence of NIH3T3 and PC3 cells to culture dishes coated with differing concentrations of EphrinA1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, N., Nakamoto, T., Hirai, H. et al. EphrinA1-induced cytoskeletal re-organization requires FAK and p130cas. Nat Cell Biol 4, 565–573 (2002). https://doi.org/10.1038/ncb823

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb823

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing