A PtdInsP3- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity

Abstract

When presented with a gradient of chemoattractant, many eukaryotic cells respond with polarized accumulation of the phospholipid PtdIns(3,4,5)P3. This lipid asymmetry is one of the earliest readouts of polarity in neutrophils, Dictyostelium discoideum and fibroblasts. However, the mechanisms that regulate PtdInsP3 polarization are not well understood. Using a cationic lipid shuttling system, we have delivered exogenous PtdInsP3 to neutrophils. Exogenous PtdInsP3 elicits accumulation of endogenous PtdInsP3 in a positive feedback loop that requires endogenous phosphatidylinositol-3-OH kinases (PI(3)Ks) and Rho family GTPases. This feedback loop is important for establishing PtdInsP3 polarity in response to both chemoattractant and to exogenous PtdInsP3; it may function through a self-organizing pattern formation system. Emergent properties of positive and negative regulatory links between PtdInsP3 and Rho family GTPases may constitute a broadly conserved module for the establishment of cell polarity during eukaryotic chemotaxis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: PtdInsP3–histone induces translocation of PH-Akt–GFP.
Figure 2: Surface plots of PH-Akt–GFP distribution in neutrophil-differentiated HL-60 cells.
Figure 3: PI(3)K and Rho GTPase inhibitors block PtdInsP3–histone-induced PH-Akt–GFP translocation.
Figure 4: Endogenous PI(3)K and Rho GTPases are not required for PtdInsP3–histone uptake.

References

  1. 1

    Meili, R. et al. EMBO J. 18, 2092–2105 (1999).

  2. 2

    Jin, T., Zhang, N., Long, Y., Parent, C. A. & Devreotes, P. N. Science 287, 1034–1036 (2000).

  3. 3

    Servant, G. et al. Science 287, 1037–1040 (2000).

  4. 4

    Haugh, J. M., Codazzi, F., Teruel, M. & Meyer, T. J. Cell Biol. 151, 1269–1280 (2000).

  5. 5

    Niggli, V. & Keller, H. Eur. J. Pharmacol. 335, 43–52 (1997).

  6. 6

    Vanhaesebroeck, B. et al. Nature Cell Biol. 1, 69–71 (1999).

  7. 7

    Funamoto, S., Milan, K., Meili, R. & Firtel, R. A. J. Cell Biol. 153, 795–810 (2001).

  8. 8

    Hirsch, E. et al. Science 287, 1049–1053 (2000).

  9. 9

    Li, Z. et al. Science 287, 1046–1049 (2000).

  10. 10

    Sasaki, T. et al. Science 287, 1040–1046 (2000).

  11. 11

    Niggli, V. FEBS Lett. 473, 217–221 (2000).

  12. 12

    Derman, M. P. et al. J. Biol. Chem. 272, 6465–6470 (1997).

  13. 13

    Ozaki, S., DeWald, D. B., Shope, J. C., Chen, J. & Prestwich, G. D. Proc. Natl Acad. Sci. USA 97, 11286–11291 (2000).

  14. 14

    Servant, G., Weiner, O. D., Neptune, E. R., Sedat, J. W. & Bourne, H. R. Mol. Biol. Cell 10, 1163–1178 (1999).

  15. 15

    Xiao, Z., Zhang, N., Murphy, D. B. & Devreotes, P. N. J. Cell Biol. 139, 365–374 (1997).

  16. 16

    Hawkins, P. T. et al. Curr. Biol. 5, 393–403 (1995).

  17. 17

    Benard, V., Bohl, B. P. & Bokoch, G. M. J. Biol. Chem. 274, 13198–13204 (1999).

  18. 18

    Yang, F. C. et al. Immunity 12, 557–568 (2000).

  19. 19

    Genot, E. M. et al. Mol. Cell Biol. 20, 5469–5478 (2000).

  20. 20

    Zheng, Y., Bagrodia, S. & Cerione, R. A. J. Biol. Chem. 269, 18727–18730 (1994).

  21. 21

    Bokoch, G. M., Vlahos, C. J., Wang, Y., Knaus, U. G. & Traynor-Kaplan, A. E. Biochem. J. 315, 775–779 (1996).

  22. 22

    Meinhardt, H. & Gierer, A. Bioessays 22, 753–760 (2000).

  23. 23

    Liliental, J. et al. Curr. Biol. 10, 401–404 (2000).

  24. 24

    Stambolic, V. et al. Cell 95, 29–39 (1998).

  25. 25

    Liu, Q. et al. Genes Dev. 13, 786–791 (1999).

  26. 26

    Gulli, M. et al. Mol. Cell 6, 1155–1167 (2000).

  27. 27

    Welch, H. C. E. et al. Cell 108, 809–821 (2002).

  28. 28

    Tolias, K. F., Cantley, L. C. & Carpenter, C. L. J. Biol. Chem. 270, 17656–17659 (1995).

  29. 29

    Carpenter, C. L., Tolias, K. F., Couvillon, A. C. & Hartwig, J. H. Adv. Enzyme Regul. 37, 377–390 (1997).

  30. 30

    Weiner, O. D. et al. Nature Cell Biol. 1, 75–81 (1999).

Download references

Acknowledgements

We thank S. Ozaki and J. Chen for NBD–PtdInsP3 synthesis, C. Kelley and M. Warny for the kind gift of Clostridium difficile toxin B, R. Tsien's lab for the PtdInsP3-AM used in early experiments, V. Niggli for advice on using this compound with neutrophils, F. Wang for protocols for the PtdInsP3 antibody, Echelon for the gift of phospholipids and histones, and C. Bargmann, C. Carpenter and C. Kenyon for helpful discussions. This work was in part supported by grants from the National Institutes of Health to H.R.B., L.C.C. (GM41890), M.W.K. (GM26825), P.O.N. (GM62734-03), and G.D.P. (NS29632). O.D.W. was supported by a Howard Hughes Medical Institute predoctoral fellowship and the Damon Runyon Cancer Research Fund.

Author information

Correspondence to Henry R. Bourne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weiner, O., Neilsen, P., Prestwich, G. et al. A PtdInsP3- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat Cell Biol 4, 509–513 (2002). https://doi.org/10.1038/ncb811

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb811

Further reading