Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein

Abstract

Systemic movement is central to plant viral infection. Exposure of tobacco plants to low levels of cadmium ions blocks the systemic spread of turnip vein-clearing tobamovirus (TVCV). We identified a tobacco glycine-rich protein, cdiGRP, specifically induced by low concentrations of cadmium and expressed in the cell walls of plant vascular tissues. Constitutive cdiGRP expression inhibited systemic transport of TVCV, whereas suppression of cdiGRP production allowed TVCV movement in the presence of cadmium. cdiGRP exerted its inhibitory effect on TVCV transport by enhancing callose deposits in the vasculature. So cdiGRP may function to control plant viral systemic movement.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Identification of cdiGRP.
Figure 2: Cadmium-ion-induced tissue-specific expression of cdiGRP in the cell walls of vascular tissues.
Figure 3: TVCV systemic movement in cdiGRP antisense plants is not inhibited by cadmium ions.
Figure 4: Reduced TVCV systemic movement in cdiGRP sense plants.
Figure 5: Effect of constitutive cdiGRP expression on TVCV disease symptoms.
Figure 6: TVCV accumulation in vascular tissues of uninoculated leaves of cadmium-ion-treated and cdiGRP S1 plants.
Figure 7: Callose accumulation in the phloem of cadmium-ion-treated and cdiGRP S2 plants.
Figure 8: Callose accumulation and TVCV systemic movement in class Iβ-1,3-glucanase-deficient TAG4.4 plants.

Accession codes

Accessions

GenBank/EMBL/DDBJ

Data deposits

  • The GenBank accession number for the cdiGRP sequence reported in this paper is AY034091.

References

  1. Leisner, S. M. & Howell, S. H. Long-distance movement of viruses in plants. Trends Microbiol. 1, 314–317 (1993).

    CAS  Article  Google Scholar 

  2. Rhee, Y., Tzfira, T., Chen, M.-H., Waigmann, E. & Citovsky, V. Cell-to-cell movement of tobacco mosaic virus: enigmas and explanations. Mol. Plant Pathol. 1, 33–39 (2000).

    CAS  Article  Google Scholar 

  3. Oparka, K. J. & Santa Cruz, S. The great escape: phloem transport and unloading of macromoleculaes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 323–347 (2000).

    CAS  Article  Google Scholar 

  4. Creager, A. N. H., Scholthof, K.-B., Citovsky, V. & Scholthof, H. B. Tobacco mosaic virus: pioneering research for a century. Plant Cell 11, 301–308 (1999).

    CAS  Article  Google Scholar 

  5. Deom, C. M., Shaw, M. J. & Beachy, R. N. The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237, 389–394 (1987).

    CAS  Article  Google Scholar 

  6. Hilf, M. E. & Dawson, W. O. The tobamovirus capsid protein functions as a host-specific determinant of long-distance movement. Virology 193, 106–114 (1993).

    CAS  Article  Google Scholar 

  7. Derrick, P. M., Carter, S. A. & Nelson, R. S. Mutation of the tobacco mosaic tobamovirus 126- and 183-kDa proteins: effects on phloem-dependent virus accumulation and synthesis of viral proteins. Mol. Plant-Microbe Interact. 10, 589–596 (1997).

    CAS  Article  Google Scholar 

  8. Boyko, V., Ferralli, J., Ashby, J., Schellenbaum, P. & Heinlein, M. Function of microtubules in intercellular transport of plant virus RNA. Nature Cell Biol. 2, 826–832 (2000).

    CAS  Article  Google Scholar 

  9. Heinlein, M., Epel, B. L., Padgett, H. S. & Beachy, R. N. Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270, 1983–1985 (1995).

    CAS  Article  Google Scholar 

  10. Waigmann, E., Chen, M.-H., Bachmaier, R., Ghoshroy, S. & Citovsky, V. Phosphorylation of tobacco mosaic virus cell-to-cell movement protein regulates viral movement in a host-specific fashion. EMBO J. 19, 4875–4884 (2000).

    CAS  Article  Google Scholar 

  11. Kawakami, S. et al. Phosphorylation and/or presence of serine 37 in the movement protein of tomato mosaic tobamovirus is essential for intracellular localization and stability in vivo. J. Virol. 73, 6831–6840 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, M.-H., Sheng, J., Hind, G., Handa, A. & Citovsky, V. Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J. 19, 913–920 (2000).

    CAS  Article  Google Scholar 

  13. Dorokhov, Y. L. et al. A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. FEBS Lett. 461, 223–228 (1999).

    CAS  Article  Google Scholar 

  14. Ghoshroy, S., Freedman, K., Lartey, R. & Citovsky, V. Inhibition of plant viral systemic infection by non-toxic concentrations of cadmium. Plant J. 13, 591–602 (1998).

    CAS  Article  Google Scholar 

  15. Citovsky, V., Ghoshroy, S., Tsui, F. & Klessig, D. F. Non-toxic concentrations of cadmium inhibit tobamoviral systemic movement by a salicylic acid-independent mechanism. Plant J. 16, 13–20 (1998).

    CAS  Article  Google Scholar 

  16. Kang, D. C., LaFrance, R., Su, Z. Z. & Fisher, P. B. Reciprocal subtraction differential RNA display: an efficient and rapid procedure for isolating differentially expressed gene sequences. Proc. Natl Acad. Sci. USA 95, 13788–13793 (1998).

    CAS  Article  Google Scholar 

  17. van Kan, J. A., Cornelissen, B. J. & Bol, J. F. A virus-inducible tobacco gene encoding a glycine-rich protein shares putative regulatory elements with the ribulose bisphosphate carboxylase small subunit gene. Mol. Plant-Microbe Interact. 1, 107–112 (1988).

    CAS  Article  Google Scholar 

  18. Domingo, C., Sauri, A., Mansilla, E., Conejero, V. & Vera, P. Identification of a novel peptide motif that mediates cross-linking of proteins to cell walls. Plant J. 20, 563–570 (1999).

    CAS  Article  Google Scholar 

  19. Sachetto-Martins, G., Franco, L. O. & de Oliveira, D. E. Plant glycine-rich proteins: a family or just proteins with a common motif? Biochim. Biophys. Acta 1492, 1–14 (2000).

    CAS  Article  Google Scholar 

  20. Cheng, N. H., Su, C. L., Carter, S. A. & Nelson, R. S. Vascular invasion routes and systemic accumulation patterns of tobacco mosaic virus in Nicotiana benthamiana. Plant J. 23, 349–362 (2000).

    CAS  Article  Google Scholar 

  21. Roberts, A. G. et al. Phloem unloading in sink leaves of Nicotiana benthamiana: comparison of a fluorescent solute with a fluorescent virus. Plant Cell 9, 1381–1396 (1997).

    CAS  Article  Google Scholar 

  22. Lartey, R., Ghoshroy, S., Ho, J. & Citovsky, V. Movement and subcellular localization of a tobamovirus in Arabidopsis. Plant J. 12, 537–545 (1997).

    CAS  Article  Google Scholar 

  23. Lartey, R. T., Voss, T. C. & Melcher, U. Completion of a cDNA sequence from a tobamovirus pathogenic to crucifers. Gene 166, 331–332 (1995).

    CAS  Article  Google Scholar 

  24. Delmer, D. P. et al. A monoclonal antibody recognizes a 65 kDa higher plant membrane polypeptide which undergoes cation-dependent association with callose deposition in vivo. Protoplasma 176, 33–42 (1993).

    CAS  Article  Google Scholar 

  25. Iglesias, V. A. & Meins Jr., F. Movement of plant viruses is delayed in a beta-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J. 21, 157–166 (2000).

    CAS  Article  Google Scholar 

  26. Bucher, G. L. et al. Local expression of enzymatically active class I beta-1,3-glucanase enhances symptoms of TMV infection in tobacco. Plant J. 28, 361–369 (2001).

    CAS  Article  Google Scholar 

  27. Beffa, R. S., Hofer, R.-M., Thomas, M. & Meins Jr., F. Decreased susceptibility to virus disease of beta-1,3-glucanase-deficient plants generated by antisense transformation. Plant Cell 8, 1001–1011 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jackson, D. Opening up the communication channels: recent insights into plasmodesmal function. Curr. Opin. Plant Biol. 3, 394–399 (2000).

    CAS  Article  Google Scholar 

  29. Tzfira, T., Rhee, Y., Chen, M.-H. & Citovsky, V. Nucleic acid transport in plant–microbe interactions: the molecules that walk through the walls. Annu. Rev. Microbiol. 54, 187–219 (2000).

    CAS  Article  Google Scholar 

  30. Vaucheret, H. et al. Transgene-induced gene silencing in plants. Plant J. 16, 651–659 (1998).

    CAS  Article  Google Scholar 

  31. Linthorst, H. J., Meuwissen, R. L., Kauffmann, S. & Bol, J. F. Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection. Plant Cell 1, 285–291 (1989).

    CAS  Article  Google Scholar 

  32. Stone, B. A. & Clarke, A. E. Chemistry and Biology of 1→3-beta-glucans (La Trobe University Press, Victoria, Australia, 1992).

    Google Scholar 

  33. Xoconostle-Cázares, B. et al. Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283, 94–98 (1999).

    Article  Google Scholar 

  34. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    CAS  Article  Google Scholar 

  35. Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533–542 (2000).

    CAS  Article  Google Scholar 

  36. Fagard, M. & Vaucheret, H. (Trans)gene silncing in plants: How many mechanisms? Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 167–194 (2000).

    CAS  Article  Google Scholar 

  37. Ueki, S. & Citovsky, V. Inhibition of post transcriptional gene silencing by non-toxic concentrations of cadmium. Plant J. 28, 283–291 (2001).

    CAS  Article  Google Scholar 

  38. Kunik, T. et al. Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Bio/Technology 12, 500–504 (1994).

    CAS  Article  Google Scholar 

  39. Abel, P. P. et al. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738–743 (1986).

    CAS  Article  Google Scholar 

  40. Golemboski, D. B., Lomonossoff, G. P. & Zaitlin, M. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc. Natl Acad. Sci. USA 87, 6311–6315 (1990).

    CAS  Article  Google Scholar 

  41. Pawlowski, K., Kunze, R., de Vries, S. & Bisseling, T. in Plant Molecular Biology Manual (eds Gelvin, S. B., Schilperoort, R. & Verma, D. P. S.) D5:1–13 (Kluwer Acad., 1994).

    Google Scholar 

  42. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Greene Publishing-Wiley Interscience, New York, 1987).

    Google Scholar 

  43. Salt, D. E., Prince, R. C., Pickering, I. J. & Raskin, I. Mechanisms of cadmium mobility and accumulation in indian mustard. Plant Physiol. 109, 1427–1433 (1995).

    CAS  Article  Google Scholar 

  44. Ghoshroy, S. & Citovsky, V. Preservation of plant cell ultrastructure during immunolocalization of virus particles. J. Virol. Methods 74, 223–229 (1998).

    CAS  Article  Google Scholar 

  45. Gallie, D. R., Lucas, W. J. & Walbot, V. Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell 1, 303–311 (1989).

    Article  Google Scholar 

  46. Horsch, R. B. et al. A simple and general method for transferring genes into plants. Science 227, 1229–1231 (1985).

    CAS  Article  Google Scholar 

  47. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiolog. Plant. 15, 473–497 (1962).

    CAS  Article  Google Scholar 

  48. Kraft, R., Tardiff, J., Kranter, K. S. & Leinwand, L. A. Using miniprep plasmid DNA for sequencing double stranded templates with Sequenase. BioTechniques 6, 544–547 (1988).

    CAS  PubMed  Google Scholar 

  49. Lartey, R. T., Hartson, S. D., Pennington, R. E., Sherwood, J. L. & Melcher, U. Occurrence of a vein-clearing tobamovirus in turnip. Plant Disease 77, 21–24 (1993).

    CAS  Article  Google Scholar 

  50. Esau, K. in Anatomy of Seed Plants (ed. Esau, K.) 157–180 (John Wiley & Sons, Inc., New York, 1977).

    Google Scholar 

Download references

Acknowledgements

We thank H. Scholthof for helpful discussions, and P. Vera and N. Carpita for critical reading of the paper. We are also grateful to F. Meins Jr. for his kind gift of TAG4.4 plants. We would like to express our gratitude to the University Microscopy Imaging Center (UMIC) at the State University of New York at Stony Brook for their technical help. This work was supported by grants from National Institutes of Health, National Science Foundation Functional Genomic Initiative, U.S. Department of Agriculture, U.S.-Israel Binational Science Foundation (BSF), and U.S.-Israel Binational Research and Development Fund (BARD) to V. C., and, in part, by a postdoctoral fellowship from the Japan Society for the Promotion of Science to S. U.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Citovsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ueki, S., Citovsky, V. The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nat Cell Biol 4, 478–486 (2002). https://doi.org/10.1038/ncb806

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb806

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing