Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes

Abstract

After endocytosis, some membrane proteins recycle from early endosomes to the plasma membrane whereas others are transported to late endosomes and lysosomes for degradation1. Conjugation with the small polypeptide ubiquitin is a signal for lysosomal sorting2,3. Here we show that the hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs4, is involved in the endosomal sorting of ubiquitinated membrane proteins. Hrs contains a clathrin-binding domain5, and by electron microscopy we show that Hrs localizes to flat clathrin lattices on early endosomes. We demonstrate that Hrs binds directly to ubiquitin by way of a ubiquitin-interacting motif (UIM), and that ubiquitinated proteins localize specifically to Hrs- and clathrin-containing microdomains. Whereas endocytosed transferrin receptors fail to colocalize with Hrs and rapidly recycle to the cell surface, transferrin receptors that are fused to ubiquitin interact with Hrs, localize to Hrs- and clathrin-containing microdomains and are sorted to the degradative pathway. Overexpression of Hrs strongly and specifically inhibits recycling of ubiquitinated transferrin receptors by a mechanism that requires a functional UIM. We conclude that Hrs sorts ubiquitinated membrane proteins into clathrin-coated microdomains of early endosomes, thereby preventing their recycling to the cell surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hrs localizes to a flat clathrin coat on early endosomes.
Figure 2: Hrs binds directly to ubiquitin and colocalizes with ubiquitinated proteins on clathrin-containing endosomal microdomains.
Figure 3: Fusion with ubiquitin inhibits recycling of TfR, and the ubiquitinated receptor interacts with Hrs.
Figure 4: Ub–TfR localizes to Hrs/clathrin microdomains on endosomes, and overexpression of Hrs strongly and specifically inhibits its recycling.

Similar content being viewed by others

References

  1. Gruenberg, J. Nature Rev. Mol. Cell Biol. 2, 721–730 (2001).

    Article  CAS  Google Scholar 

  2. Hicke, L. Nature Rev. Mol. Cell Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

  3. Dupre, S., Volland, C. & Haguenauer-Tsapis, R. Curr. Biol. 11, R932–R934 (2001).

    Article  CAS  Google Scholar 

  4. Komada, M. & Kitamura, N. Mol. Cell Biol. 15, 6213–6221 (1995).

    Article  CAS  Google Scholar 

  5. Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. EMBO J. 20, 5008–5021 (2001).

    Article  CAS  Google Scholar 

  6. Stoorvogel, W., Oorschot, V. & Geuze, H. J. J. Cell Biol. 132, 21–33 (1996).

    Article  CAS  Google Scholar 

  7. Hofmann, K. & Falquet, L. Trends Biochem. Sci. 26, 347–350 (2001).

    Article  CAS  Google Scholar 

  8. Lloyd, T. E. et al. Cell 108, 261–269 (2002).

    Article  CAS  Google Scholar 

  9. Stenmark, H. et al. EMBO J. 13, 1287–1296 (1994).

    Article  CAS  Google Scholar 

  10. Hopkins, C. R. Cell 35, 321–330 (1983).

    Article  CAS  Google Scholar 

  11. Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C. & Wakeham, D. E. Annu. Rev. Cell Dev. Biol. 17, 517–568 (2001).

    Article  CAS  Google Scholar 

  12. Hirst, J. & Robinson, M. S. Biochim. Biophys. Acta 1404, 173–193 (1998).

    Article  CAS  Google Scholar 

  13. Levkowitz, G. et al. Mol. Cell 4, 1029–1040 (1999).

    Article  CAS  Google Scholar 

  14. Shenoy, S. K., McDonald, P. H., Kohout, T. A. & Lefkowitz, R. J. Science 294, 1307–1313 (2001).

    Article  CAS  Google Scholar 

  15. Rocca, A., Lamaze, C., Subtil, A. & Dautry-Varsat, A. Mol. Biol. Cell 12, 1293–1301 (2001).

    Article  CAS  Google Scholar 

  16. Reggiori, F. & Pelham, H. R. EMBO J. 20, 5176–5186 (2001).

    Article  CAS  Google Scholar 

  17. Urbanowski, J. L. & Piper, R. C. Traffic. 2, 622–630 (2001).

    Article  CAS  Google Scholar 

  18. Van Kerkhof, P., Govers, R., Alves dos Santos, C. M. & Strous, G. J. J. Biol. Chem. 275, 1575–1580 (2000).

    Article  CAS  Google Scholar 

  19. Asao, H. et al. J. Biol. Chem. 272, 32785–32791 (1997).

    Article  CAS  Google Scholar 

  20. Takata, H., Kato, M., Denda, K. & Kitamura, N. Genes Cells 5, 57–69 (2000).

    Article  CAS  Google Scholar 

  21. Bean, A. J. et al. J. Biol. Chem. 275, 15271–15278 (2000).

    Article  CAS  Google Scholar 

  22. Katzmann, D. J., Babst, M. & Emr, S. D. Cell 106, 145–155 (2001).

    Article  CAS  Google Scholar 

  23. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. Mol. Cell Biol. 5, 3610–3616 (1985).

    Article  CAS  Google Scholar 

  24. Mu, F. T. et al. J. Biol. Chem. 270, 13503–13511 (1995).

    Article  CAS  Google Scholar 

  25. Gaullier, J.-M. et al. Nature 394, 432–433 (1998).

    Article  CAS  Google Scholar 

  26. Zerial, M., Melancon, P., Schneider, C. & Garoff, H. EMBO J. 5, 1543–1550 (1986).

    Article  CAS  Google Scholar 

  27. Vojtek, A. B., Hollenberg, S. M. & Cooper, J. A. Cell 74, 205–214 (1993).

    Article  CAS  Google Scholar 

  28. Griffiths, G., McDowall, A., Back, R. & Dubochet, J. J. Ultrastruct. Res. 89, 65–78 (1984).

    Article  CAS  Google Scholar 

  29. Sutter, G., Ohlmann, M. & Erfle, V. FEBS Lett. 371, 9–12 (1995).

    Article  CAS  Google Scholar 

  30. Simonsen, A., Bremnes, B., Rønning, E., Aasland, R. & Stenmark, H. Eur. J. Cell Biol. 75, 223–231 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Eva Rønning for technical assistance and Philip Woodman for helpful advice. This work was supported by the Top Research Programme, the Research Council of Norway, the Norwegian Cancer Society, the Novo-Nordisk Foundation and the Anders Jahre's Foundation for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Figure S1

Ubiquitination of TfR causes its sorting into the degradative endocytic pathway. (PDF 406 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raiborg, C., Bache, K., Gillooly, D. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol 4, 394–398 (2002). https://doi.org/10.1038/ncb791

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb791

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing